mirror of /home/gitosis/repositories/libowfat.git
Mirror of :pserver:cvs@cvs.fefe.de:/cvs libowfat
https://www.fefe.de/libowfat/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
123 lines
5.4 KiB
123 lines
5.4 KiB
#include "fmt.h" |
|
|
|
size_t scan_utf8(const char* in,size_t len,uint32_t* num) { |
|
uint32_t i,k,m; |
|
const char* orig=in; |
|
if (len==0) return 0; |
|
i=(*(unsigned char*)in++); /* grab first byte */ |
|
if (i>=0xfe || /* 0xfe and 0xff are invalid encodings in utf-8 for the first byte */ |
|
(i&0xc0)==0x80) return 0; /* first bits being 10 marks continuation chars, invalid sequence for first byte */ |
|
for (k=0; i&0x80; i<<=1, ++k); /* count leading 1 bits */ |
|
if (!k) { |
|
if (num) *num=i; |
|
return 1; |
|
} |
|
if (k>len) return 0; |
|
i=(i&0xff)>>k; /* mask the leading 1 bits */ |
|
/* The next part is a little tricky. |
|
* UTF-8 says that the encoder has to choose the most efficient |
|
* encoding, and the decoder has to reject other encodings. The |
|
* background is that attackers encoded '/' not as 0x2f but as 0xc0 |
|
* 0xaf, and that evaded bad security checks just scan for the '/' |
|
* byte in pathnames. |
|
* At this point k contains the number of bytes, so k-1 is the number |
|
* of continuation bytes. For each additional continuation byte, we |
|
* gain 6 bits of storage space, but we lose one in the signalling in |
|
* the initial byte. So we have 6 + (k-1) * 5 bits total storage |
|
* space for this encoding. The minimum value for k bytes is the |
|
* maximum number for k-1 bytes plus 1. If the previous encoding has |
|
* 11 bits, its maximum value is 11 1-bits or 0x7ff, and the minimum |
|
* value we are looking for is 0x800 or 1<<11. For 2 bytes, UTF-8 can |
|
* encode 11 bits, after that each additional byte gains 5 more bits. |
|
* So for k>2, we want |
|
* 1 << (11+(k-3)*5) |
|
* or optimized to get rid of the -3 |
|
* 1 << (k*5-4) |
|
* but for k==2 the delta is 4 bits (not 5), so we want |
|
* 1 << 7 |
|
* abusing the fact that a boolean expression evaluates to 0 or 1, the |
|
* expression can be written as |
|
* 1 << (k*5-4+(k==2)) |
|
*/ |
|
m=((uint32_t)1<<(k*5-4+(k==2))); |
|
while (k>1) { |
|
if ((*in&0xc0)!=0x80) return 0; |
|
i=(i<<6) | ((*in++)&0x3f); |
|
--k; |
|
} |
|
if (i<m) return 0; /* if the encoded value was less than m, reject */ |
|
if (num) *num=i; |
|
return (size_t)(in-orig); |
|
} |
|
|
|
#ifdef UNITTEST |
|
#include <assert.h> |
|
#include "fmt/fmt_utf8.c" |
|
|
|
int main() { |
|
char buf[100]; |
|
uint32_t l; |
|
unsigned int i; |
|
/* first positive testing for the various lengths */ |
|
l=fmt_utf8(buf,0); assert(l == 1 && scan_utf8(buf,l+1,&l)==1 && l==0); |
|
l=fmt_utf8(buf,0x80); assert(l == 2 && scan_utf8(buf,l+1,&l)==2 && l==0x80); |
|
l=fmt_utf8(buf,0x800); assert(l == 3 && scan_utf8(buf,l+1,&l)==3 && l==0x800); |
|
l=fmt_utf8(buf,0x10000); assert(l == 4 && scan_utf8(buf,l+1,&l)==4 && l==0x10000); |
|
l=fmt_utf8(buf,0x200000); assert(l == 5 && scan_utf8(buf,l+1,&l)==5 && l==0x200000); |
|
l=fmt_utf8(buf,0x4000000); assert(l == 6 && scan_utf8(buf,l+1,&l)==6 && l==0x4000000); |
|
/* corner cases */ |
|
l=fmt_utf8(buf,0x7f); assert(l == 1 && scan_utf8(buf,l+1,&l)==1 && l==0x7f); |
|
l=fmt_utf8(buf,0x7ff); assert(l == 2 && scan_utf8(buf,l+1,&l)==2 && l==0x7ff); |
|
l=fmt_utf8(buf,0xffff); assert(l == 3 && scan_utf8(buf,l+1,&l)==3 && l==0xffff); |
|
l=fmt_utf8(buf,0x1fffff); assert(l == 4 && scan_utf8(buf,l+1,&l)==4 && l==0x1fffff); |
|
l=fmt_utf8(buf,0x3ffffff); assert(l == 5 && scan_utf8(buf,l+1,&l)==5 && l==0x3ffffff); |
|
l=fmt_utf8(buf,0x7fffffff); assert(l == 6 && scan_utf8(buf,l+1,&l)==6 && l==0x7fffffff); |
|
/* more corner cases */ |
|
l=fmt_utf8(buf,0xd7ff); assert(l == 3 && scan_utf8(buf,l+1,&l)==3 && l==0xd7ff); |
|
l=fmt_utf8(buf,0xe000); assert(l == 3 && scan_utf8(buf,l+1,&l)==3 && l==0xe000); |
|
l=fmt_utf8(buf,0xfffd); assert(l == 3 && scan_utf8(buf,l+1,&l)==3 && l==0xfffd); |
|
l=fmt_utf8(buf,0x10ffff); assert(l == 4 && scan_utf8(buf,l+1,&l)==4 && l==0x10ffff); |
|
l=fmt_utf8(buf,0x110000); assert(l == 4 && scan_utf8(buf,l+1,&l)==4 && l==0x110000); |
|
|
|
/* now negative testing */ |
|
/* start off with some continuation bytes outside a sequence */ |
|
for (i=0x80; i<=0xbf; ++i) { |
|
buf[0]=i; |
|
assert(scan_utf8(buf,2,&l)==0); |
|
} |
|
|
|
/* now check lonely sequence start characters */ |
|
buf[1]=' '; |
|
for (i=0xc0; i<=0xfd; ++i) { |
|
buf[0]=i; |
|
assert(scan_utf8(buf,2,&l)==0); |
|
} |
|
|
|
/* FE and FF are reserved for UTF-16 endianness detection*/ |
|
assert(scan_utf8("\xfe\xff",3,&l)==0); |
|
assert(scan_utf8("\xff\xfe",3,&l)==0); |
|
|
|
/* now check some truncated sequences */ |
|
l=fmt_utf8(buf,0); assert(l == 1 && scan_utf8(buf,l-1,&l)==0); |
|
l=fmt_utf8(buf,0x80); assert(l == 2 && scan_utf8(buf,l-1,&l)==0); |
|
l=fmt_utf8(buf,0x800); assert(l == 3 && scan_utf8(buf,l-1,&l)==0); |
|
l=fmt_utf8(buf,0x10000); assert(l == 4 && scan_utf8(buf,l-1,&l)==0); |
|
l=fmt_utf8(buf,0x200000); assert(l == 5 && scan_utf8(buf,l-1,&l)==0); |
|
l=fmt_utf8(buf,0x4000000); assert(l == 6 && scan_utf8(buf,l-1,&l)==0); |
|
|
|
/* now truncate in another way */ |
|
l=fmt_utf8(buf,0x80); buf[l-1]=' '; assert(l == 2 && scan_utf8(buf,l+1,&l)==0); |
|
l=fmt_utf8(buf,0x800); buf[l-1]=' '; assert(l == 3 && scan_utf8(buf,l+1,&l)==0); |
|
l=fmt_utf8(buf,0x10000); buf[l-1]=' '; assert(l == 4 && scan_utf8(buf,l+1,&l)==0); |
|
l=fmt_utf8(buf,0x200000); buf[l-1]=' '; assert(l == 5 && scan_utf8(buf,l+1,&l)==0); |
|
l=fmt_utf8(buf,0x4000000); buf[l-1]=' '; assert(l == 6 && scan_utf8(buf,l+1,&l)==0); |
|
|
|
/* now some not minimally encoded utf-8 sequences */ |
|
assert(scan_utf8("\xc0\x80",3,&l)==0); |
|
assert(scan_utf8("\xe0\x80\x80",4,&l)==0); |
|
assert(scan_utf8("\xf0\x80\x80\x80",5,&l)==0); |
|
assert(scan_utf8("\xf8\x80\x80\x80\x80",6,&l)==0); |
|
assert(scan_utf8("\xfc\x80\x80\x80\x80\x80",7,&l)==0); |
|
return 0; |
|
} |
|
#endif
|
|
|