Mirror of :pserver:anonymous@cvs.schmorp.de/schmorpforge libev http://software.schmorp.de/pkg/libev.html
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

2272 lines
47 KiB

/*
* libev event processing core, watcher management
*
* Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef __cplusplus
extern "C" {
#endif
#ifndef EV_STANDALONE
# ifdef EV_CONFIG_H
# include EV_CONFIG_H
# else
# include "config.h"
# endif
# if HAVE_CLOCK_GETTIME
# ifndef EV_USE_MONOTONIC
# define EV_USE_MONOTONIC 1
# endif
# ifndef EV_USE_REALTIME
# define EV_USE_REALTIME 1
# endif
# else
# ifndef EV_USE_MONOTONIC
# define EV_USE_MONOTONIC 0
# endif
# ifndef EV_USE_REALTIME
# define EV_USE_REALTIME 0
# endif
# endif
# ifndef EV_USE_SELECT
# if HAVE_SELECT && HAVE_SYS_SELECT_H
# define EV_USE_SELECT 1
# else
# define EV_USE_SELECT 0
# endif
# endif
# ifndef EV_USE_POLL
# if HAVE_POLL && HAVE_POLL_H
# define EV_USE_POLL 1
# else
# define EV_USE_POLL 0
# endif
# endif
# ifndef EV_USE_EPOLL
# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
# define EV_USE_EPOLL 1
# else
# define EV_USE_EPOLL 0
# endif
# endif
# ifndef EV_USE_KQUEUE
# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
# define EV_USE_KQUEUE 1
# else
# define EV_USE_KQUEUE 0
# endif
# endif
# ifndef EV_USE_PORT
# if HAVE_PORT_H && HAVE_PORT_CREATE
# define EV_USE_PORT 1
# else
# define EV_USE_PORT 0
# endif
# endif
# ifndef EV_USE_INOTIFY
# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
# define EV_USE_INOTIFY 1
# else
# define EV_USE_INOTIFY 0
# endif
# endif
#endif
#include <math.h>
#include <stdlib.h>
#include <fcntl.h>
#include <stddef.h>
#include <stdio.h>
#include <assert.h>
#include <errno.h>
#include <sys/types.h>
#include <time.h>
#include <signal.h>
#ifdef EV_H
# include EV_H
#else
# include "ev.h"
#endif
#ifndef _WIN32
# include <sys/time.h>
# include <sys/wait.h>
# include <unistd.h>
#else
# define WIN32_LEAN_AND_MEAN
# include <windows.h>
# ifndef EV_SELECT_IS_WINSOCKET
# define EV_SELECT_IS_WINSOCKET 1
# endif
#endif
/**/
#ifndef EV_USE_MONOTONIC
# define EV_USE_MONOTONIC 0
#endif
#ifndef EV_USE_REALTIME
# define EV_USE_REALTIME 0
#endif
#ifndef EV_USE_SELECT
# define EV_USE_SELECT 1
#endif
#ifndef EV_USE_POLL
# ifdef _WIN32
# define EV_USE_POLL 0
# else
# define EV_USE_POLL 1
# endif
#endif
#ifndef EV_USE_EPOLL
# define EV_USE_EPOLL 0
#endif
#ifndef EV_USE_KQUEUE
# define EV_USE_KQUEUE 0
#endif
#ifndef EV_USE_PORT
# define EV_USE_PORT 0
#endif
#ifndef EV_USE_INOTIFY
# define EV_USE_INOTIFY 0
#endif
#ifndef EV_PID_HASHSIZE
# if EV_MINIMAL
# define EV_PID_HASHSIZE 1
# else
# define EV_PID_HASHSIZE 16
# endif
#endif
#ifndef EV_INOTIFY_HASHSIZE
# if EV_MINIMAL
# define EV_INOTIFY_HASHSIZE 1
# else
# define EV_INOTIFY_HASHSIZE 16
# endif
#endif
/**/
#ifndef CLOCK_MONOTONIC
# undef EV_USE_MONOTONIC
# define EV_USE_MONOTONIC 0
#endif
#ifndef CLOCK_REALTIME
# undef EV_USE_REALTIME
# define EV_USE_REALTIME 0
#endif
#if EV_SELECT_IS_WINSOCKET
# include <winsock.h>
#endif
#if !EV_STAT_ENABLE
# define EV_USE_INOTIFY 0
#endif
#if EV_USE_INOTIFY
# include <sys/inotify.h>
#endif
/**/
#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
#if __GNUC__ >= 3
# define expect(expr,value) __builtin_expect ((expr),(value))
# define inline_size static inline /* inline for codesize */
# if EV_MINIMAL
# define noinline __attribute__ ((noinline))
# define inline_speed static noinline
# else
# define noinline
# define inline_speed static inline
# endif
#else
# define expect(expr,value) (expr)
# define inline_speed static
# define inline_size static
# define noinline
#endif
#define expect_false(expr) expect ((expr) != 0, 0)
#define expect_true(expr) expect ((expr) != 0, 1)
#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
#define EMPTY /* required for microsofts broken pseudo-c compiler */
#define EMPTY2(a,b) /* used to suppress some warnings */
typedef ev_watcher *W;
typedef ev_watcher_list *WL;
typedef ev_watcher_time *WT;
static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
#ifdef _WIN32
# include "ev_win32.c"
#endif
/*****************************************************************************/
static void (*syserr_cb)(const char *msg);
void
ev_set_syserr_cb (void (*cb)(const char *msg))
{
syserr_cb = cb;
}
static void noinline
syserr (const char *msg)
{
if (!msg)
msg = "(libev) system error";
if (syserr_cb)
syserr_cb (msg);
else
{
perror (msg);
abort ();
}
}
static void *(*alloc)(void *ptr, long size);
void
ev_set_allocator (void *(*cb)(void *ptr, long size))
{
alloc = cb;
}
inline_speed void *
ev_realloc (void *ptr, long size)
{
ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
if (!ptr && size)
{
fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
abort ();
}
return ptr;
}
#define ev_malloc(size) ev_realloc (0, (size))
#define ev_free(ptr) ev_realloc ((ptr), 0)
/*****************************************************************************/
typedef struct
{
WL head;
unsigned char events;
unsigned char reify;
#if EV_SELECT_IS_WINSOCKET
SOCKET handle;
#endif
} ANFD;
typedef struct
{
W w;
int events;
} ANPENDING;
#if EV_USE_INOTIFY
typedef struct
{
WL head;
} ANFS;
#endif
#if EV_MULTIPLICITY
struct ev_loop
{
ev_tstamp ev_rt_now;
#define ev_rt_now ((loop)->ev_rt_now)
#define VAR(name,decl) decl;
#include "ev_vars.h"
#undef VAR
};
#include "ev_wrap.h"
static struct ev_loop default_loop_struct;
struct ev_loop *ev_default_loop_ptr;
#else
ev_tstamp ev_rt_now;
#define VAR(name,decl) static decl;
#include "ev_vars.h"
#undef VAR
static int ev_default_loop_ptr;
#endif
/*****************************************************************************/
ev_tstamp
ev_time (void)
{
#if EV_USE_REALTIME
struct timespec ts;
clock_gettime (CLOCK_REALTIME, &ts);
return ts.tv_sec + ts.tv_nsec * 1e-9;
#else
struct timeval tv;
gettimeofday (&tv, 0);
return tv.tv_sec + tv.tv_usec * 1e-6;
#endif
}
ev_tstamp inline_size
get_clock (void)
{
#if EV_USE_MONOTONIC
if (expect_true (have_monotonic))
{
struct timespec ts;
clock_gettime (CLOCK_MONOTONIC, &ts);
return ts.tv_sec + ts.tv_nsec * 1e-9;
}
#endif
return ev_time ();
}
#if EV_MULTIPLICITY
ev_tstamp
ev_now (EV_P)
{
return ev_rt_now;
}
#endif
int inline_size
array_nextsize (int elem, int cur, int cnt)
{
int ncur = cur + 1;
do
ncur <<= 1;
while (cnt > ncur);
/* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
if (elem * ncur > 4096)
{
ncur *= elem;
ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
ncur = ncur - sizeof (void *) * 4;
ncur /= elem;
}
return ncur;
}
inline_speed void *
array_realloc (int elem, void *base, int *cur, int cnt)
{
*cur = array_nextsize (elem, *cur, cnt);
return ev_realloc (base, elem * *cur);
}
#define array_needsize(type,base,cur,cnt,init) \
if (expect_false ((cnt) > (cur))) \
{ \
int ocur_ = (cur); \
(base) = (type *)array_realloc \
(sizeof (type), (base), &(cur), (cnt)); \
init ((base) + (ocur_), (cur) - ocur_); \
}
#if 0
#define array_slim(type,stem) \
if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
{ \
stem ## max = array_roundsize (stem ## cnt >> 1); \
base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
}
#endif
#define array_free(stem, idx) \
ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
/*****************************************************************************/
void noinline
ev_feed_event (EV_P_ void *w, int revents)
{
W w_ = (W)w;
if (expect_false (w_->pending))
{
pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
return;
}
w_->pending = ++pendingcnt [ABSPRI (w_)];
array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
}
void inline_size
queue_events (EV_P_ W *events, int eventcnt, int type)
{
int i;
for (i = 0; i < eventcnt; ++i)
ev_feed_event (EV_A_ events [i], type);
}
/*****************************************************************************/
void inline_size
anfds_init (ANFD *base, int count)
{
while (count--)
{
base->head = 0;
base->events = EV_NONE;
base->reify = 0;
++base;
}
}
void inline_speed
fd_event (EV_P_ int fd, int revents)
{
ANFD *anfd = anfds + fd;
ev_io *w;
for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
{
int ev = w->events & revents;
if (ev)
ev_feed_event (EV_A_ (W)w, ev);
}
}
void
ev_feed_fd_event (EV_P_ int fd, int revents)
{
fd_event (EV_A_ fd, revents);
}
void inline_size
fd_reify (EV_P)
{
int i;
for (i = 0; i < fdchangecnt; ++i)
{
int fd = fdchanges [i];
ANFD *anfd = anfds + fd;
ev_io *w;
int events = 0;
for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
events |= w->events;
#if EV_SELECT_IS_WINSOCKET
if (events)
{
unsigned long argp;
anfd->handle = _get_osfhandle (fd);
assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
}
#endif
anfd->reify = 0;
backend_modify (EV_A_ fd, anfd->events, events);
anfd->events = events;
}
fdchangecnt = 0;
}
void inline_size
fd_change (EV_P_ int fd)
{
if (expect_false (anfds [fd].reify))
return;
anfds [fd].reify = 1;
++fdchangecnt;
array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
fdchanges [fdchangecnt - 1] = fd;
}
void inline_speed
fd_kill (EV_P_ int fd)
{
ev_io *w;
while ((w = (ev_io *)anfds [fd].head))
{
ev_io_stop (EV_A_ w);
ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
}
}
int inline_size
fd_valid (int fd)
{
#ifdef _WIN32
return _get_osfhandle (fd) != -1;
#else
return fcntl (fd, F_GETFD) != -1;
#endif
}
/* called on EBADF to verify fds */
static void noinline
fd_ebadf (EV_P)
{
int fd;
for (fd = 0; fd < anfdmax; ++fd)
if (anfds [fd].events)
if (!fd_valid (fd) == -1 && errno == EBADF)
fd_kill (EV_A_ fd);
}
/* called on ENOMEM in select/poll to kill some fds and retry */
static void noinline
fd_enomem (EV_P)
{
int fd;
for (fd = anfdmax; fd--; )
if (anfds [fd].events)
{
fd_kill (EV_A_ fd);
return;
}
}
/* usually called after fork if backend needs to re-arm all fds from scratch */
static void noinline
fd_rearm_all (EV_P)
{
int fd;
for (fd = 0; fd < anfdmax; ++fd)
if (anfds [fd].events)
{
anfds [fd].events = 0;
fd_change (EV_A_ fd);
}
}
/*****************************************************************************/
void inline_speed
upheap (WT *heap, int k)
{
WT w = heap [k];
while (k && heap [k >> 1]->at > w->at)
{
heap [k] = heap [k >> 1];
((W)heap [k])->active = k + 1;
k >>= 1;
}
heap [k] = w;
((W)heap [k])->active = k + 1;
}
void inline_speed
downheap (WT *heap, int N, int k)
{
WT w = heap [k];
while (k < (N >> 1))
{
int j = k << 1;
if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
++j;
if (w->at <= heap [j]->at)
break;
heap [k] = heap [j];
((W)heap [k])->active = k + 1;
k = j;
}
heap [k] = w;
((W)heap [k])->active = k + 1;
}
void inline_size
adjustheap (WT *heap, int N, int k)
{
upheap (heap, k);
downheap (heap, N, k);
}
/*****************************************************************************/
typedef struct
{
WL head;
sig_atomic_t volatile gotsig;
} ANSIG;
static ANSIG *signals;
static int signalmax;
static int sigpipe [2];
static sig_atomic_t volatile gotsig;
static ev_io sigev;
void inline_size
signals_init (ANSIG *base, int count)
{
while (count--)
{
base->head = 0;
base->gotsig = 0;
++base;
}
}
static void
sighandler (int signum)
{
#if _WIN32
signal (signum, sighandler);
#endif
signals [signum - 1].gotsig = 1;
if (!gotsig)
{
int old_errno = errno;
gotsig = 1;
write (sigpipe [1], &signum, 1);
errno = old_errno;
}
}
void noinline
ev_feed_signal_event (EV_P_ int signum)
{
WL w;
#if EV_MULTIPLICITY
assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
#endif
--signum;
if (signum < 0 || signum >= signalmax)
return;
signals [signum].gotsig = 0;
for (w = signals [signum].head; w; w = w->next)
ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
}
static void
sigcb (EV_P_ ev_io *iow, int revents)
{
int signum;
read (sigpipe [0], &revents, 1);
gotsig = 0;
for (signum = signalmax; signum--; )
if (signals [signum].gotsig)
ev_feed_signal_event (EV_A_ signum + 1);
}
void inline_size
fd_intern (int fd)
{
#ifdef _WIN32
int arg = 1;
ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
#else
fcntl (fd, F_SETFD, FD_CLOEXEC);
fcntl (fd, F_SETFL, O_NONBLOCK);
#endif
}
static void noinline
siginit (EV_P)
{
fd_intern (sigpipe [0]);
fd_intern (sigpipe [1]);
ev_io_set (&sigev, sigpipe [0], EV_READ);
ev_io_start (EV_A_ &sigev);
ev_unref (EV_A); /* child watcher should not keep loop alive */
}
/*****************************************************************************/
static ev_child *childs [EV_PID_HASHSIZE];
#ifndef _WIN32
static ev_signal childev;
void inline_speed
child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
{
ev_child *w;
for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
if (w->pid == pid || !w->pid)
{
ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
w->rpid = pid;
w->rstatus = status;
ev_feed_event (EV_A_ (W)w, EV_CHILD);
}
}
#ifndef WCONTINUED
# define WCONTINUED 0
#endif
static void
childcb (EV_P_ ev_signal *sw, int revents)
{
int pid, status;
/* some systems define WCONTINUED but then fail to support it (linux 2.4) */
if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
if (!WCONTINUED
|| errno != EINVAL
|| 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
return;
/* make sure we are called again until all childs have been reaped */
/* we need to do it this way so that the callback gets called before we continue */
ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
child_reap (EV_A_ sw, pid, pid, status);
if (EV_PID_HASHSIZE > 1)
child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
}
#endif
/*****************************************************************************/
#if EV_USE_PORT
# include "ev_port.c"
#endif
#if EV_USE_KQUEUE
# include "ev_kqueue.c"
#endif
#if EV_USE_EPOLL
# include "ev_epoll.c"
#endif
#if EV_USE_POLL
# include "ev_poll.c"
#endif
#if EV_USE_SELECT
# include "ev_select.c"
#endif
int
ev_version_major (void)
{
return EV_VERSION_MAJOR;
}
int
ev_version_minor (void)
{
return EV_VERSION_MINOR;
}
/* return true if we are running with elevated privileges and should ignore env variables */
int inline_size
enable_secure (void)
{
#ifdef _WIN32
return 0;
#else
return getuid () != geteuid ()
|| getgid () != getegid ();
#endif
}
unsigned int
ev_supported_backends (void)
{
unsigned int flags = 0;
if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
return flags;
}
unsigned int
ev_recommended_backends (void)
{
unsigned int flags = ev_supported_backends ();
#ifndef __NetBSD__
/* kqueue is borked on everything but netbsd apparently */
/* it usually doesn't work correctly on anything but sockets and pipes */
flags &= ~EVBACKEND_KQUEUE;
#endif
#ifdef __APPLE__
// flags &= ~EVBACKEND_KQUEUE; for documentation
flags &= ~EVBACKEND_POLL;
#endif
return flags;
}
unsigned int
ev_embeddable_backends (void)
{
return EVBACKEND_EPOLL
| EVBACKEND_KQUEUE
| EVBACKEND_PORT;
}
unsigned int
ev_backend (EV_P)
{
return backend;
}
unsigned int
ev_loop_count (EV_P)
{
return loop_count;
}
static void noinline
loop_init (EV_P_ unsigned int flags)
{
if (!backend)
{
#if EV_USE_MONOTONIC
{
struct timespec ts;
if (!clock_gettime (CLOCK_MONOTONIC, &ts))
have_monotonic = 1;
}
#endif
ev_rt_now = ev_time ();
mn_now = get_clock ();
now_floor = mn_now;
rtmn_diff = ev_rt_now - mn_now;
/* pid check not overridable via env */
#ifndef _WIN32
if (flags & EVFLAG_FORKCHECK)
curpid = getpid ();
#endif
if (!(flags & EVFLAG_NOENV)
&& !enable_secure ()
&& getenv ("LIBEV_FLAGS"))
flags = atoi (getenv ("LIBEV_FLAGS"));
if (!(flags & 0x0000ffffUL))
flags |= ev_recommended_backends ();
backend = 0;
backend_fd = -1;
#if EV_USE_INOTIFY
fs_fd = -2;
#endif
#if EV_USE_PORT
if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
#endif
#if EV_USE_KQUEUE
if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
#endif
#if EV_USE_EPOLL
if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
#endif
#if EV_USE_POLL
if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
#endif
#if EV_USE_SELECT
if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
#endif
ev_init (&sigev, sigcb);
ev_set_priority (&sigev, EV_MAXPRI);
}
}
static void noinline
loop_destroy (EV_P)
{
int i;
#if EV_USE_INOTIFY
if (fs_fd >= 0)
close (fs_fd);
#endif
if (backend_fd >= 0)
close (backend_fd);
#if EV_USE_PORT
if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
#endif
#if EV_USE_KQUEUE
if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
#endif
#if EV_USE_EPOLL
if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
#endif
#if EV_USE_POLL
if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
#endif
#if EV_USE_SELECT
if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
#endif
for (i = NUMPRI; i--; )
{
array_free (pending, [i]);
#if EV_IDLE_ENABLE
array_free (idle, [i]);
#endif
}
/* have to use the microsoft-never-gets-it-right macro */
array_free (fdchange, EMPTY);
array_free (timer, EMPTY);
#if EV_PERIODIC_ENABLE
array_free (periodic, EMPTY);
#endif
array_free (prepare, EMPTY);
array_free (check, EMPTY);
backend = 0;
}
void inline_size infy_fork (EV_P);
void inline_size
loop_fork (EV_P)
{
#if EV_USE_PORT
if (backend == EVBACKEND_PORT ) port_fork (EV_A);
#endif
#if EV_USE_KQUEUE
if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
#endif
#if EV_USE_EPOLL
if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
#endif
#if EV_USE_INOTIFY
infy_fork (EV_A);
#endif
if (ev_is_active (&sigev))
{
/* default loop */
ev_ref (EV_A);
ev_io_stop (EV_A_ &sigev);
close (sigpipe [0]);
close (sigpipe [1]);
while (pipe (sigpipe))
syserr ("(libev) error creating pipe");
siginit (EV_A);
}
postfork = 0;
}
#if EV_MULTIPLICITY
struct ev_loop *
ev_loop_new (unsigned int flags)
{
struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
memset (loop, 0, sizeof (struct ev_loop));
loop_init (EV_A_ flags);
if (ev_backend (EV_A))
return loop;
return 0;
}
void
ev_loop_destroy (EV_P)
{
loop_destroy (EV_A);
ev_free (loop);
}
void
ev_loop_fork (EV_P)
{
postfork = 1;
}
#endif
#if EV_MULTIPLICITY
struct ev_loop *
ev_default_loop_init (unsigned int flags)
#else
int
ev_default_loop (unsigned int flags)
#endif
{
if (sigpipe [0] == sigpipe [1])
if (pipe (sigpipe))
return 0;
if (!ev_default_loop_ptr)
{
#if EV_MULTIPLICITY
struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
#else
ev_default_loop_ptr = 1;
#endif
loop_init (EV_A_ flags);
if (ev_backend (EV_A))
{
siginit (EV_A);
#ifndef _WIN32
ev_signal_init (&childev, childcb, SIGCHLD);
ev_set_priority (&childev, EV_MAXPRI);
ev_signal_start (EV_A_ &childev);
ev_unref (EV_A); /* child watcher should not keep loop alive */
#endif
}
else
ev_default_loop_ptr = 0;
}
return ev_default_loop_ptr;
}
void
ev_default_destroy (void)
{
#if EV_MULTIPLICITY
struct ev_loop *loop = ev_default_loop_ptr;
#endif
#ifndef _WIN32
ev_ref (EV_A); /* child watcher */
ev_signal_stop (EV_A_ &childev);
#endif
ev_ref (EV_A); /* signal watcher */
ev_io_stop (EV_A_ &sigev);
close (sigpipe [0]); sigpipe [0] = 0;
close (sigpipe [1]); sigpipe [1] = 0;
loop_destroy (EV_A);
}
void
ev_default_fork (void)
{
#if EV_MULTIPLICITY
struct ev_loop *loop = ev_default_loop_ptr;
#endif
if (backend)
postfork = 1;
}
/*****************************************************************************/
void inline_speed
call_pending (EV_P)
{
int pri;
for (pri = NUMPRI; pri--; )
while (pendingcnt [pri])
{
ANPENDING *p = pendings [pri] + --pendingcnt [pri];
if (expect_true (p->w))
{
/*assert (("non-pending watcher on pending list", p->w->pending));*/
p->w->pending = 0;
EV_CB_INVOKE (p->w, p->events);
}
}
}
void inline_size
timers_reify (EV_P)
{
while (timercnt && ((WT)timers [0])->at <= mn_now)
{
ev_timer *w = timers [0];
/*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
/* first reschedule or stop timer */
if (w->repeat)
{
assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
((WT)w)->at += w->repeat;
if (((WT)w)->at < mn_now)
((WT)w)->at = mn_now;
downheap ((WT *)timers, timercnt, 0);
}
else
ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
}
}
#if EV_PERIODIC_ENABLE
void inline_size
periodics_reify (EV_P)
{
while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
{
ev_periodic *w = periodics [0];
/*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
/* first reschedule or stop timer */
if (w->reschedule_cb)
{
((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
downheap ((WT *)periodics, periodiccnt, 0);
}
else if (w->interval)
{
((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
downheap ((WT *)periodics, periodiccnt, 0);
}
else
ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
}
}
static void noinline
periodics_reschedule (EV_P)
{
int i;
/* adjust periodics after time jump */
for (i = 0; i < periodiccnt; ++i)
{
ev_periodic *w = periodics [i];
if (w->reschedule_cb)
((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
else if (w->interval)
((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
}
/* now rebuild the heap */
for (i = periodiccnt >> 1; i--; )
downheap ((WT *)periodics, periodiccnt, i);
}
#endif
#if EV_IDLE_ENABLE
void inline_size
idle_reify (EV_P)
{
if (expect_false (!idleall))
{
int pri;
for (pri = NUMPRI; pri--; )
{
if (pendingcnt [pri])
break;
if (idlecnt [pri])
{
queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
break;
}
}
}
}
#endif
int inline_size
time_update_monotonic (EV_P)
{
mn_now = get_clock ();
if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
{
ev_rt_now = rtmn_diff + mn_now;
return 0;
}
else
{
now_floor = mn_now;
ev_rt_now = ev_time ();
return 1;
}
}
void inline_size
time_update (EV_P)
{
int i;
#if EV_USE_MONOTONIC
if (expect_true (have_monotonic))
{
if (time_update_monotonic (EV_A))
{
ev_tstamp odiff = rtmn_diff;
/* loop a few times, before making important decisions.
* on the choice of "4": one iteration isn't enough,
* in case we get preempted during the calls to
* ev_time and get_clock. a second call is almost guaranteed
* to succeed in that case, though. and looping a few more times
* doesn't hurt either as we only do this on time-jumps or
* in the unlikely event of having been preempted here.
*/
for (i = 4; --i; )
{
rtmn_diff = ev_rt_now - mn_now;
if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
return; /* all is well */
ev_rt_now = ev_time ();
mn_now = get_clock ();
now_floor = mn_now;
}
# if EV_PERIODIC_ENABLE
periodics_reschedule (EV_A);
# endif
/* no timer adjustment, as the monotonic clock doesn't jump */
/* timers_reschedule (EV_A_ rtmn_diff - odiff) */
}
}
else
#endif
{
ev_rt_now = ev_time ();
if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
{
#if EV_PERIODIC_ENABLE
periodics_reschedule (EV_A);
#endif
/* adjust timers. this is easy, as the offset is the same for all of them */
for (i = 0; i < timercnt; ++i)
((WT)timers [i])->at += ev_rt_now - mn_now;
}
mn_now = ev_rt_now;
}
}
void
ev_ref (EV_P)
{
++activecnt;
}
void
ev_unref (EV_P)
{
--activecnt;
}
static int loop_done;
void
ev_loop (EV_P_ int flags)
{
loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
? EVUNLOOP_ONE
: EVUNLOOP_CANCEL;
call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
do
{
#ifndef _WIN32
if (expect_false (curpid)) /* penalise the forking check even more */
if (expect_false (getpid () != curpid))
{
curpid = getpid ();
postfork = 1;
}
#endif
#if EV_FORK_ENABLE
/* we might have forked, so queue fork handlers */
if (expect_false (postfork))
if (forkcnt)
{
queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
call_pending (EV_A);
}
#endif
/* queue check watchers (and execute them) */
if (expect_false (preparecnt))
{
queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
call_pending (EV_A);
}
if (expect_false (!activecnt))
break;
/* we might have forked, so reify kernel state if necessary */
if (expect_false (postfork))
loop_fork (EV_A);
/* update fd-related kernel structures */
fd_reify (EV_A);
/* calculate blocking time */
{
ev_tstamp block;
if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
block = 0.; /* do not block at all */
else
{
/* update time to cancel out callback processing overhead */
#if EV_USE_MONOTONIC
if (expect_true (have_monotonic))
time_update_monotonic (EV_A);
else
#endif
{
ev_rt_now = ev_time ();
mn_now = ev_rt_now;
}
block = MAX_BLOCKTIME;
if (timercnt)
{
ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
if (block > to) block = to;
}
#if EV_PERIODIC_ENABLE
if (periodiccnt)
{
ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
if (block > to) block = to;
}
#endif
if (expect_false (block < 0.)) block = 0.;
}
++loop_count;
backend_poll (EV_A_ block);
}
/* update ev_rt_now, do magic */
time_update (EV_A);
/* queue pending timers and reschedule them */
timers_reify (EV_A); /* relative timers called last */
#if EV_PERIODIC_ENABLE
periodics_reify (EV_A); /* absolute timers called first */
#endif
#if EV_IDLE_ENABLE
/* queue idle watchers unless other events are pending */
idle_reify (EV_A);
#endif
/* queue check watchers, to be executed first */
if (expect_false (checkcnt))
queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
call_pending (EV_A);
}
while (expect_true (activecnt && !loop_done));
if (loop_done == EVUNLOOP_ONE)
loop_done = EVUNLOOP_CANCEL;
}
void
ev_unloop (EV_P_ int how)
{
loop_done = how;
}
/*****************************************************************************/
void inline_size
wlist_add (WL *head, WL elem)
{
elem->next = *head;
*head = elem;
}
void inline_size
wlist_del (WL *head, WL elem)
{
while (*head)
{
if (*head == elem)
{
*head = elem->next;
return;
}
head = &(*head)->next;
}
}
void inline_speed
ev_clear_pending (EV_P_ W w)
{
if (w->pending)
{
pendings [ABSPRI (w)][w->pending - 1].w = 0;
w->pending = 0;
}
}
void inline_size
pri_adjust (EV_P_ W w)
{
int pri = w->priority;
pri = pri < EV_MINPRI ? EV_MINPRI : pri;
pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
w->priority = pri;
}
void inline_speed
ev_start (EV_P_ W w, int active)
{
pri_adjust (EV_A_ w);
w->active = active;
ev_ref (EV_A);
}
void inline_size
ev_stop (EV_P_ W w)
{
ev_unref (EV_A);
w->active = 0;
}
/*****************************************************************************/
void
ev_io_start (EV_P_ ev_io *w)
{
int fd = w->fd;
if (expect_false (ev_is_active (w)))
return;
assert (("ev_io_start called with negative fd", fd >= 0));
ev_start (EV_A_ (W)w, 1);
array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
wlist_add ((WL *)&anfds[fd].head, (WL)w);
fd_change (EV_A_ fd);
}
void
ev_io_stop (EV_P_ ev_io *w)
{
ev_clear_pending (EV_A_ (W)w);
if (expect_false (!ev_is_active (w)))
return;
assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
ev_stop (EV_A_ (W)w);
fd_change (EV_A_ w->fd);
}
void
ev_timer_start (EV_P_ ev_timer *w)
{
if (expect_false (ev_is_active (w)))
return;
((WT)w)->at += mn_now;
assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
ev_start (EV_A_ (W)w, ++timercnt);
array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
timers [timercnt - 1] = w;
upheap ((WT *)timers, timercnt - 1);
/*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
}
void
ev_timer_stop (EV_P_ ev_timer *w)
{
ev_clear_pending (EV_A_ (W)w);
if (expect_false (!ev_is_active (w)))
return;
assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
{
int active = ((W)w)->active;
if (expect_true (--active < --timercnt))
{
timers [active] = timers [timercnt];
adjustheap ((WT *)timers, timercnt, active);
}
}
((WT)w)->at -= mn_now;
ev_stop (EV_A_ (W)w);
}
void
ev_timer_again (EV_P_ ev_timer *w)
{
if (ev_is_active (w))
{
if (w->repeat)
{
((WT)w)->at = mn_now + w->repeat;
adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
}
else
ev_timer_stop (EV_A_ w);
}
else if (w->repeat)
{
w->at = w->repeat;
ev_timer_start (EV_A_ w);
}
}
#if EV_PERIODIC_ENABLE
void
ev_periodic_start (EV_P_ ev_periodic *w)
{
if (expect_false (ev_is_active (w)))
return;
if (w->reschedule_cb)
((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
else if (w->interval)
{
assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
/* this formula differs from the one in periodic_reify because we do not always round up */
((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
}
ev_start (EV_A_ (W)w, ++periodiccnt);
array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
periodics [periodiccnt - 1] = w;
upheap ((WT *)periodics, periodiccnt - 1);
/*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
}
void
ev_periodic_stop (EV_P_ ev_periodic *w)
{
ev_clear_pending (EV_A_ (W)w);
if (expect_false (!ev_is_active (w)))
return;
assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
{
int active = ((W)w)->active;
if (expect_true (--active < --periodiccnt))
{
periodics [active] = periodics [periodiccnt];
adjustheap ((WT *)periodics, periodiccnt, active);
}
}
ev_stop (EV_A_ (W)w);
}
void
ev_periodic_again (EV_P_ ev_periodic *w)
{
/* TODO: use adjustheap and recalculation */
ev_periodic_stop (EV_A_ w);
ev_periodic_start (EV_A_ w);
}
#endif
#ifndef SA_RESTART
# define SA_RESTART 0
#endif
void
ev_signal_start (EV_P_ ev_signal *w)
{
#if EV_MULTIPLICITY
assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
#endif
if (expect_false (ev_is_active (w)))
return;
assert (("ev_signal_start called with illegal signal number", w->signum > 0));
ev_start (EV_A_ (W)w, 1);
array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
if (!((WL)w)->next)
{
#if _WIN32
signal (w->signum, sighandler);
#else
struct sigaction sa;
sa.sa_handler = sighandler;
sigfillset (&sa.sa_mask);
sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
sigaction (w->signum, &sa, 0);
#endif
}
}
void
ev_signal_stop (EV_P_ ev_signal *w)
{
ev_clear_pending (EV_A_ (W)w);
if (expect_false (!ev_is_active (w)))
return;
wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
ev_stop (EV_A_ (W)w);
if (!signals [w->signum - 1].head)
signal (w->signum, SIG_DFL);
}
void
ev_child_start (EV_P_ ev_child *w)
{
#if EV_MULTIPLICITY
assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
#endif
if (expect_false (ev_is_active (w)))
return;
ev_start (EV_A_ (W)w, 1);
wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
}
void
ev_child_stop (EV_P_ ev_child *w)
{
ev_clear_pending (EV_A_ (W)w);
if (expect_false (!ev_is_active (w)))
return;
wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
ev_stop (EV_A_ (W)w);
}
#if EV_STAT_ENABLE
# ifdef _WIN32
# undef lstat
# define lstat(a,b) _stati64 (a,b)
# endif
#define DEF_STAT_INTERVAL 5.0074891
#define MIN_STAT_INTERVAL 0.1074891
static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
#if EV_USE_INOTIFY
# define EV_INOTIFY_BUFSIZE 8192
static void noinline
infy_add (EV_P_ ev_stat *w)
{
w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
if (w->wd < 0)
{
ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
/* monitor some parent directory for speedup hints */
if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
{
char path [4096];
strcpy (path, w->path);
do
{
int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
| (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
char *pend = strrchr (path, '/');
if (!pend)
break; /* whoops, no '/', complain to your admin */
*pend = 0;
w->wd = inotify_add_watch (fs_fd, path, mask);
}
while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
}
}
else
ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
if (w->wd >= 0)
wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
}
static void noinline
infy_del (EV_P_ ev_stat *w)
{
int slot;
int wd = w->wd;
if (wd < 0)
return;
w->wd = -2;
slot = wd & (EV_INOTIFY_HASHSIZE - 1);
wlist_del (&fs_hash [slot].head, (WL)w);
/* remove this watcher, if others are watching it, they will rearm */
inotify_rm_watch (fs_fd, wd);
}
static void noinline
infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
{
if (slot < 0)
/* overflow, need to check for all hahs slots */
for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
infy_wd (EV_A_ slot, wd, ev);
else
{
WL w_;
for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
{
ev_stat *w = (ev_stat *)w_;
w_ = w_->next; /* lets us remove this watcher and all before it */
if (w->wd == wd || wd == -1)
{
if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
{
w->wd = -1;
infy_add (EV_A_ w); /* re-add, no matter what */
}
stat_timer_cb (EV_A_ &w->timer, 0);
}
}
}
}
static void
infy_cb (EV_P_ ev_io *w, int revents)
{
char buf [EV_INOTIFY_BUFSIZE];
struct inotify_event *ev = (struct inotify_event *)buf;
int ofs;
int len = read (fs_fd, buf, sizeof (buf));
for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
infy_wd (EV_A_ ev->wd, ev->wd, ev);
}
void inline_size
infy_init (EV_P)
{
if (fs_fd != -2)
return;
fs_fd = inotify_init ();
if (fs_fd >= 0)
{
ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
ev_set_priority (&fs_w, EV_MAXPRI);
ev_io_start (EV_A_ &fs_w);
}
}
void inline_size
infy_fork (EV_P)
{
int slot;
if (fs_fd < 0)
return;
close (fs_fd);
fs_fd = inotify_init ();
for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
{
WL w_ = fs_hash [slot].head;
fs_hash [slot].head = 0;
while (w_)
{
ev_stat *w = (ev_stat *)w_;
w_ = w_->next; /* lets us add this watcher */
w->wd = -1;
if (fs_fd >= 0)
infy_add (EV_A_ w); /* re-add, no matter what */
else
ev_timer_start (EV_A_ &w->timer);
}
}
}
#endif
void
ev_stat_stat (EV_P_ ev_stat *w)
{
if (lstat (w->path, &w->attr) < 0)
w->attr.st_nlink = 0;
else if (!w->attr.st_nlink)
w->attr.st_nlink = 1;
}
static void noinline
stat_timer_cb (EV_P_ ev_timer *w_, int revents)
{
ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
/* we copy this here each the time so that */
/* prev has the old value when the callback gets invoked */
w->prev = w->attr;
ev_stat_stat (EV_A_ w);
/* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
if (
w->prev.st_dev != w->attr.st_dev
|| w->prev.st_ino != w->attr.st_ino
|| w->prev.st_mode != w->attr.st_mode
|| w->prev.st_nlink != w->attr.st_nlink
|| w->prev.st_uid != w->attr.st_uid
|| w->prev.st_gid != w->attr.st_gid
|| w->prev.st_rdev != w->attr.st_rdev
|| w->prev.st_size != w->attr.st_size
|| w->prev.st_atime != w->attr.st_atime
|| w->prev.st_mtime != w->attr.st_mtime
|| w->prev.st_ctime != w->attr.st_ctime
) {
#if EV_USE_INOTIFY
infy_del (EV_A_ w);
infy_add (EV_A_ w);
ev_stat_stat (EV_A_ w); /* avoid race... */
#endif
ev_feed_event (EV_A_ w, EV_STAT);
}
}
void
ev_stat_start (EV_P_ ev_stat *w)
{
if (expect_false (ev_is_active (w)))
return;
/* since we use memcmp, we need to clear any padding data etc. */
memset (&w->prev, 0, sizeof (ev_statdata));
memset (&w->attr, 0, sizeof (ev_statdata));
ev_stat_stat (EV_A_ w);
if (w->interval < MIN_STAT_INTERVAL)
w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
ev_set_priority (&w->timer, ev_priority (w));
#if EV_USE_INOTIFY
infy_init (EV_A);
if (fs_fd >= 0)
infy_add (EV_A_ w);
else
#endif
ev_timer_start (EV_A_ &w->timer);
ev_start (EV_A_ (W)w, 1);
}
void
ev_stat_stop (EV_P_ ev_stat *w)
{
ev_clear_pending (EV_A_ (W)w);
if (expect_false (!ev_is_active (w)))
return;
#if EV_USE_INOTIFY
infy_del (EV_A_ w);
#endif
ev_timer_stop (EV_A_ &w->timer);
ev_stop (EV_A_ (W)w);
}
#endif
#if EV_IDLE_ENABLE
void
ev_idle_start (EV_P_ ev_idle *w)
{
if (expect_false (ev_is_active (w)))
return;
pri_adjust (EV_A_ (W)w);
{
int active = ++idlecnt [ABSPRI (w)];
++idleall;
ev_start (EV_A_ (W)w, active);
array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
idles [ABSPRI (w)][active - 1] = w;
}
}
void
ev_idle_stop (EV_P_ ev_idle *w)
{
ev_clear_pending (EV_A_ (W)w);
if (expect_false (!ev_is_active (w)))
return;
{
int active = ((W)w)->active;
idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
((W)idles [ABSPRI (w)][active - 1])->active = active;
ev_stop (EV_A_ (W)w);
--idleall;
}
}
#endif
void
ev_prepare_start (EV_P_ ev_prepare *w)
{
if (expect_false (ev_is_active (w)))
return;
ev_start (EV_A_ (W)w, ++preparecnt);
array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
prepares [preparecnt - 1] = w;
}
void
ev_prepare_stop (EV_P_ ev_prepare *w)
{
ev_clear_pending (EV_A_ (W)w);
if (expect_false (!ev_is_active (w)))
return;
{
int active = ((W)w)->active;
prepares [active - 1] = prepares [--preparecnt];
((W)prepares [active - 1])->active = active;
}
ev_stop (EV_A_ (W)w);
}
void
ev_check_start (EV_P_ ev_check *w)
{
if (expect_false (ev_is_active (w)))
return;
ev_start (EV_A_ (W)w, ++checkcnt);
array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
checks [checkcnt - 1] = w;
}
void
ev_check_stop (EV_P_ ev_check *w)
{
ev_clear_pending (EV_A_ (W)w);
if (expect_false (!ev_is_active (w)))
return;
{
int active = ((W)w)->active;
checks [active - 1] = checks [--checkcnt];
((W)checks [active - 1])->active = active;
}
ev_stop (EV_A_ (W)w);
}
#if EV_EMBED_ENABLE
void noinline
ev_embed_sweep (EV_P_ ev_embed *w)
{
ev_loop (w->loop, EVLOOP_NONBLOCK);
}
static void
embed_cb (EV_P_ ev_io *io, int revents)
{
ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
if (ev_cb (w))
ev_feed_event (EV_A_ (W)w, EV_EMBED);
else
ev_embed_sweep (loop, w);
}
void
ev_embed_start (EV_P_ ev_embed *w)
{
if (expect_false (ev_is_active (w)))
return;
{
struct ev_loop *loop = w->loop;
assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
}
ev_set_priority (&w->io, ev_priority (w));
ev_io_start (EV_A_ &w->io);
ev_start (EV_A_ (W)w, 1);
}
void
ev_embed_stop (EV_P_ ev_embed *w)
{
ev_clear_pending (EV_A_ (W)w);
if (expect_false (!ev_is_active (w)))
return;
ev_io_stop (EV_A_ &w->io);
ev_stop (EV_A_ (W)w);
}
#endif
#if EV_FORK_ENABLE
void
ev_fork_start (EV_P_ ev_fork *w)
{
if (expect_false (ev_is_active (w)))
return;
ev_start (EV_A_ (W)w, ++forkcnt);
array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
forks [forkcnt - 1] = w;
}
void
ev_fork_stop (EV_P_ ev_fork *w)
{
ev_clear_pending (EV_A_ (W)w);
if (expect_false (!ev_is_active (w)))
return;
{
int active = ((W)w)->active;
forks [active - 1] = forks [--forkcnt];
((W)forks [active - 1])->active = active;
}
ev_stop (EV_A_ (W)w);
}
#endif
/*****************************************************************************/
struct ev_once
{
ev_io io;
ev_timer to;
void (*cb)(int revents, void *arg);
void *arg;
};
static void
once_cb (EV_P_ struct ev_once *once, int revents)
{
void (*cb)(int revents, void *arg) = once->cb;
void *arg = once->arg;
ev_io_stop (EV_A_ &once->io);
ev_timer_stop (EV_A_ &once->to);
ev_free (once);
cb (revents, arg);
}
static void
once_cb_io (EV_P_ ev_io *w, int revents)
{
once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
}
static void
once_cb_to (EV_P_ ev_timer *w, int revents)
{
once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
}
void
ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
{
struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
if (expect_false (!once))
{
cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
return;
}
once->cb = cb;
once->arg = arg;
ev_init (&once->io, once_cb_io);
if (fd >= 0)
{
ev_io_set (&once->io, fd, events);
ev_io_start (EV_A_ &once->io);
}
ev_init (&once->to, once_cb_to);
if (timeout >= 0.)
{
ev_timer_set (&once->to, timeout, 0.);
ev_timer_start (EV_A_ &once->to);
}
}
#ifdef __cplusplus
}
#endif