Mirror of :pserver:anonymous@cvs.schmorp.de/schmorpforge libev http://software.schmorp.de/pkg/libev.html
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

1385 lines
28 KiB

/*
* libev event processing core, watcher management
*
* Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef EV_STANDALONE
# include "config.h"
# if HAVE_CLOCK_GETTIME
# define EV_USE_MONOTONIC 1
# define EV_USE_REALTIME 1
# endif
# if HAVE_SELECT && HAVE_SYS_SELECT_H
# define EV_USE_SELECT 1
# endif
# if HAVE_POLL && HAVE_POLL_H
# define EV_USE_POLL 1
# endif
# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
# define EV_USE_EPOLL 1
# endif
# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
# define EV_USE_KQUEUE 1
# endif
#endif
#include <math.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <signal.h>
#include <stddef.h>
#include <stdio.h>
#include <assert.h>
#include <errno.h>
#include <sys/types.h>
#ifndef WIN32
# include <sys/wait.h>
#endif
#include <sys/time.h>
#include <time.h>
/**/
#ifndef EV_USE_MONOTONIC
# define EV_USE_MONOTONIC 1
#endif
#ifndef EV_USE_SELECT
# define EV_USE_SELECT 1
#endif
#ifndef EV_USE_POLL
# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
#endif
#ifndef EV_USE_EPOLL
# define EV_USE_EPOLL 0
#endif
#ifndef EV_USE_KQUEUE
# define EV_USE_KQUEUE 0
#endif
#ifndef EV_USE_REALTIME
# define EV_USE_REALTIME 1
#endif
/**/
#ifndef CLOCK_MONOTONIC
# undef EV_USE_MONOTONIC
# define EV_USE_MONOTONIC 0
#endif
#ifndef CLOCK_REALTIME
# undef EV_USE_REALTIME
# define EV_USE_REALTIME 0
#endif
/**/
#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
#include "ev.h"
#if __GNUC__ >= 3
# define expect(expr,value) __builtin_expect ((expr),(value))
# define inline inline
#else
# define expect(expr,value) (expr)
# define inline static
#endif
#define expect_false(expr) expect ((expr) != 0, 0)
#define expect_true(expr) expect ((expr) != 0, 1)
#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
#define ABSPRI(w) ((w)->priority - EV_MINPRI)
typedef struct ev_watcher *W;
typedef struct ev_watcher_list *WL;
typedef struct ev_watcher_time *WT;
static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
/*****************************************************************************/
typedef struct
{
struct ev_watcher_list *head;
unsigned char events;
unsigned char reify;
} ANFD;
typedef struct
{
W w;
int events;
} ANPENDING;
#if EV_MULTIPLICITY
struct ev_loop
{
# define VAR(name,decl) decl;
# include "ev_vars.h"
};
# undef VAR
# include "ev_wrap.h"
#else
# define VAR(name,decl) static decl;
# include "ev_vars.h"
# undef VAR
#endif
/*****************************************************************************/
inline ev_tstamp
ev_time (void)
{
#if EV_USE_REALTIME
struct timespec ts;
clock_gettime (CLOCK_REALTIME, &ts);
return ts.tv_sec + ts.tv_nsec * 1e-9;
#else
struct timeval tv;
gettimeofday (&tv, 0);
return tv.tv_sec + tv.tv_usec * 1e-6;
#endif
}
inline ev_tstamp
get_clock (void)
{
#if EV_USE_MONOTONIC
if (expect_true (have_monotonic))
{
struct timespec ts;
clock_gettime (CLOCK_MONOTONIC, &ts);
return ts.tv_sec + ts.tv_nsec * 1e-9;
}
#endif
return ev_time ();
}
ev_tstamp
ev_now (EV_P)
{
return rt_now;
}
#define array_roundsize(base,n) ((n) | 4 & ~3)
#define array_needsize(base,cur,cnt,init) \
if (expect_false ((cnt) > cur)) \
{ \
int newcnt = cur; \
do \
{ \
newcnt = array_roundsize (base, newcnt << 1); \
} \
while ((cnt) > newcnt); \
\
base = realloc (base, sizeof (*base) * (newcnt)); \
init (base + cur, newcnt - cur); \
cur = newcnt; \
}
/*****************************************************************************/
static void
anfds_init (ANFD *base, int count)
{
while (count--)
{
base->head = 0;
base->events = EV_NONE;
base->reify = 0;
++base;
}
}
static void
event (EV_P_ W w, int events)
{
if (w->pending)
{
pendings [ABSPRI (w)][w->pending - 1].events |= events;
return;
}
w->pending = ++pendingcnt [ABSPRI (w)];
array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
pendings [ABSPRI (w)][w->pending - 1].w = w;
pendings [ABSPRI (w)][w->pending - 1].events = events;
}
static void
queue_events (EV_P_ W *events, int eventcnt, int type)
{
int i;
for (i = 0; i < eventcnt; ++i)
event (EV_A_ events [i], type);
}
static void
fd_event (EV_P_ int fd, int events)
{
ANFD *anfd = anfds + fd;
struct ev_io *w;
for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
{
int ev = w->events & events;
if (ev)
event (EV_A_ (W)w, ev);
}
}
/*****************************************************************************/
static void
fd_reify (EV_P)
{
int i;
for (i = 0; i < fdchangecnt; ++i)
{
int fd = fdchanges [i];
ANFD *anfd = anfds + fd;
struct ev_io *w;
int events = 0;
for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
events |= w->events;
anfd->reify = 0;
if (anfd->events != events)
{
method_modify (EV_A_ fd, anfd->events, events);
anfd->events = events;
}
}
fdchangecnt = 0;
}
static void
fd_change (EV_P_ int fd)
{
if (anfds [fd].reify || fdchangecnt < 0)
return;
anfds [fd].reify = 1;
++fdchangecnt;
array_needsize (fdchanges, fdchangemax, fdchangecnt, );
fdchanges [fdchangecnt - 1] = fd;
}
static void
fd_kill (EV_P_ int fd)
{
struct ev_io *w;
while ((w = (struct ev_io *)anfds [fd].head))
{
ev_io_stop (EV_A_ w);
event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
}
}
/* called on EBADF to verify fds */
static void
fd_ebadf (EV_P)
{
int fd;
for (fd = 0; fd < anfdmax; ++fd)
if (anfds [fd].events)
if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
fd_kill (EV_A_ fd);
}
/* called on ENOMEM in select/poll to kill some fds and retry */
static void
fd_enomem (EV_P)
{
int fd = anfdmax;
while (fd--)
if (anfds [fd].events)
{
close (fd);
fd_kill (EV_A_ fd);
return;
}
}
/* susually called after fork if method needs to re-arm all fds from scratch */
static void
fd_rearm_all (EV_P)
{
int fd;
/* this should be highly optimised to not do anything but set a flag */
for (fd = 0; fd < anfdmax; ++fd)
if (anfds [fd].events)
{
anfds [fd].events = 0;
fd_change (EV_A_ fd);
}
}
/*****************************************************************************/
static void
upheap (WT *heap, int k)
{
WT w = heap [k];
while (k && heap [k >> 1]->at > w->at)
{
heap [k] = heap [k >> 1];
heap [k]->active = k + 1;
k >>= 1;
}
heap [k] = w;
heap [k]->active = k + 1;
}
static void
downheap (WT *heap, int N, int k)
{
WT w = heap [k];
while (k < (N >> 1))
{
int j = k << 1;
if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
++j;
if (w->at <= heap [j]->at)
break;
heap [k] = heap [j];
heap [k]->active = k + 1;
k = j;
}
heap [k] = w;
heap [k]->active = k + 1;
}
/*****************************************************************************/
typedef struct
{
struct ev_watcher_list *head;
sig_atomic_t volatile gotsig;
} ANSIG;
static ANSIG *signals;
static int signalmax;
static int sigpipe [2];
static sig_atomic_t volatile gotsig;
static struct ev_io sigev;
static void
signals_init (ANSIG *base, int count)
{
while (count--)
{
base->head = 0;
base->gotsig = 0;
++base;
}
}
static void
sighandler (int signum)
{
signals [signum - 1].gotsig = 1;
if (!gotsig)
{
int old_errno = errno;
gotsig = 1;
write (sigpipe [1], &signum, 1);
errno = old_errno;
}
}
static void
sigcb (EV_P_ struct ev_io *iow, int revents)
{
struct ev_watcher_list *w;
int signum;
read (sigpipe [0], &revents, 1);
gotsig = 0;
for (signum = signalmax; signum--; )
if (signals [signum].gotsig)
{
signals [signum].gotsig = 0;
for (w = signals [signum].head; w; w = w->next)
event (EV_A_ (W)w, EV_SIGNAL);
}
}
static void
siginit (EV_P)
{
#ifndef WIN32
fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
/* rather than sort out wether we really need nb, set it */
fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
#endif
ev_io_set (&sigev, sigpipe [0], EV_READ);
ev_io_start (EV_A_ &sigev);
ev_unref (EV_A); /* child watcher should not keep loop alive */
}
/*****************************************************************************/
#ifndef WIN32
static struct ev_child *childs [PID_HASHSIZE];
static struct ev_signal childev;
#ifndef WCONTINUED
# define WCONTINUED 0
#endif
static void
child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
{
struct ev_child *w;
for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
if (w->pid == pid || !w->pid)
{
w->priority = sw->priority; /* need to do it *now* */
w->rpid = pid;
w->rstatus = status;
event (EV_A_ (W)w, EV_CHILD);
}
}
static void
childcb (EV_P_ struct ev_signal *sw, int revents)
{
int pid, status;
if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
{
/* make sure we are called again until all childs have been reaped */
event (EV_A_ (W)sw, EV_SIGNAL);
child_reap (EV_A_ sw, pid, pid, status);
child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
}
}
#endif
/*****************************************************************************/
#if EV_USE_KQUEUE
# include "ev_kqueue.c"
#endif
#if EV_USE_EPOLL
# include "ev_epoll.c"
#endif
#if EV_USE_POLL
# include "ev_poll.c"
#endif
#if EV_USE_SELECT
# include "ev_select.c"
#endif
int
ev_version_major (void)
{
return EV_VERSION_MAJOR;
}
int
ev_version_minor (void)
{
return EV_VERSION_MINOR;
}
/* return true if we are running with elevated privileges and should ignore env variables */
static int
enable_secure (void)
{
#ifdef WIN32
return 0;
#else
return getuid () != geteuid ()
|| getgid () != getegid ();
#endif
}
int
ev_method (EV_P)
{
return method;
}
static void
loop_init (EV_P_ int methods)
{
if (!method)
{
#if EV_USE_MONOTONIC
{
struct timespec ts;
if (!clock_gettime (CLOCK_MONOTONIC, &ts))
have_monotonic = 1;
}
#endif
rt_now = ev_time ();
mn_now = get_clock ();
now_floor = mn_now;
rtmn_diff = rt_now - mn_now;
if (methods == EVMETHOD_AUTO)
if (!enable_secure () && getenv ("LIBEV_METHODS"))
methods = atoi (getenv ("LIBEV_METHODS"));
else
methods = EVMETHOD_ANY;
method = 0;
#if EV_USE_KQUEUE
if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
#endif
#if EV_USE_EPOLL
if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
#endif
#if EV_USE_POLL
if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
#endif
#if EV_USE_SELECT
if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
#endif
}
}
void
loop_destroy (EV_P)
{
#if EV_USE_KQUEUE
if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
#endif
#if EV_USE_EPOLL
if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
#endif
#if EV_USE_POLL
if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
#endif
#if EV_USE_SELECT
if (method == EVMETHOD_SELECT) select_destroy (EV_A);
#endif
method = 0;
/*TODO*/
}
void
loop_fork (EV_P)
{
/*TODO*/
#if EV_USE_EPOLL
if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
#endif
#if EV_USE_KQUEUE
if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
#endif
}
#if EV_MULTIPLICITY
struct ev_loop *
ev_loop_new (int methods)
{
struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
loop_init (EV_A_ methods);
if (ev_method (EV_A))
return loop;
return 0;
}
void
ev_loop_destroy (EV_P)
{
loop_destroy (EV_A);
free (loop);
}
void
ev_loop_fork (EV_P)
{
loop_fork (EV_A);
}
#endif
#if EV_MULTIPLICITY
struct ev_loop default_loop_struct;
static struct ev_loop *default_loop;
struct ev_loop *
#else
static int default_loop;
int
#endif
ev_default_loop (int methods)
{
if (sigpipe [0] == sigpipe [1])
if (pipe (sigpipe))
return 0;
if (!default_loop)
{
#if EV_MULTIPLICITY
struct ev_loop *loop = default_loop = &default_loop_struct;
#else
default_loop = 1;
#endif
loop_init (EV_A_ methods);
if (ev_method (EV_A))
{
ev_watcher_init (&sigev, sigcb);
ev_set_priority (&sigev, EV_MAXPRI);
siginit (EV_A);
#ifndef WIN32
ev_signal_init (&childev, childcb, SIGCHLD);
ev_set_priority (&childev, EV_MAXPRI);
ev_signal_start (EV_A_ &childev);
ev_unref (EV_A); /* child watcher should not keep loop alive */
#endif
}
else
default_loop = 0;
}
return default_loop;
}
void
ev_default_destroy (void)
{
#if EV_MULTIPLICITY
struct ev_loop *loop = default_loop;
#endif
ev_ref (EV_A); /* child watcher */
ev_signal_stop (EV_A_ &childev);
ev_ref (EV_A); /* signal watcher */
ev_io_stop (EV_A_ &sigev);
close (sigpipe [0]); sigpipe [0] = 0;
close (sigpipe [1]); sigpipe [1] = 0;
loop_destroy (EV_A);
}
void
ev_default_fork (void)
{
#if EV_MULTIPLICITY
struct ev_loop *loop = default_loop;
#endif
loop_fork (EV_A);
ev_io_stop (EV_A_ &sigev);
close (sigpipe [0]);
close (sigpipe [1]);
pipe (sigpipe);
ev_ref (EV_A); /* signal watcher */
siginit (EV_A);
}
/*****************************************************************************/
static void
call_pending (EV_P)
{
int pri;
for (pri = NUMPRI; pri--; )
while (pendingcnt [pri])
{
ANPENDING *p = pendings [pri] + --pendingcnt [pri];
if (p->w)
{
p->w->pending = 0;
p->w->cb (EV_A_ p->w, p->events);
}
}
}
static void
timers_reify (EV_P)
{
while (timercnt && timers [0]->at <= mn_now)
{
struct ev_timer *w = timers [0];
/* first reschedule or stop timer */
if (w->repeat)
{
assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
w->at = mn_now + w->repeat;
downheap ((WT *)timers, timercnt, 0);
}
else
ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
event (EV_A_ (W)w, EV_TIMEOUT);
}
}
static void
periodics_reify (EV_P)
{
while (periodiccnt && periodics [0]->at <= rt_now)
{
struct ev_periodic *w = periodics [0];
/* first reschedule or stop timer */
if (w->interval)
{
w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
downheap ((WT *)periodics, periodiccnt, 0);
}
else
ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
event (EV_A_ (W)w, EV_PERIODIC);
}
}
static void
periodics_reschedule (EV_P)
{
int i;
/* adjust periodics after time jump */
for (i = 0; i < periodiccnt; ++i)
{
struct ev_periodic *w = periodics [i];
if (w->interval)
{
ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
if (fabs (diff) >= 1e-4)
{
ev_periodic_stop (EV_A_ w);
ev_periodic_start (EV_A_ w);
i = 0; /* restart loop, inefficient, but time jumps should be rare */
}
}
}
}
inline int
time_update_monotonic (EV_P)
{
mn_now = get_clock ();
if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
{
rt_now = rtmn_diff + mn_now;
return 0;
}
else
{
now_floor = mn_now;
rt_now = ev_time ();
return 1;
}
}
static void
time_update (EV_P)
{
int i;
#if EV_USE_MONOTONIC
if (expect_true (have_monotonic))
{
if (time_update_monotonic (EV_A))
{
ev_tstamp odiff = rtmn_diff;
for (i = 4; --i; ) /* loop a few times, before making important decisions */
{
rtmn_diff = rt_now - mn_now;
if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
return; /* all is well */
rt_now = ev_time ();
mn_now = get_clock ();
now_floor = mn_now;
}
periodics_reschedule (EV_A);
/* no timer adjustment, as the monotonic clock doesn't jump */
/* timers_reschedule (EV_A_ rtmn_diff - odiff) */
}
}
else
#endif
{
rt_now = ev_time ();
if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
{
periodics_reschedule (EV_A);
/* adjust timers. this is easy, as the offset is the same for all */
for (i = 0; i < timercnt; ++i)
timers [i]->at += rt_now - mn_now;
}
mn_now = rt_now;
}
}
void
ev_ref (EV_P)
{
++activecnt;
}
void
ev_unref (EV_P)
{
--activecnt;
}
static int loop_done;
void
ev_loop (EV_P_ int flags)
{
double block;
loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
do
{
/* queue check watchers (and execute them) */
if (expect_false (preparecnt))
{
queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
call_pending (EV_A);
}
/* update fd-related kernel structures */
fd_reify (EV_A);
/* calculate blocking time */
/* we only need this for !monotonic clockor timers, but as we basically
always have timers, we just calculate it always */
#if EV_USE_MONOTONIC
if (expect_true (have_monotonic))
time_update_monotonic (EV_A);
else
#endif
{
rt_now = ev_time ();
mn_now = rt_now;
}
if (flags & EVLOOP_NONBLOCK || idlecnt)
block = 0.;
else
{
block = MAX_BLOCKTIME;
if (timercnt)
{
ev_tstamp to = timers [0]->at - mn_now + method_fudge;
if (block > to) block = to;
}
if (periodiccnt)
{
ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
if (block > to) block = to;
}
if (block < 0.) block = 0.;
}
method_poll (EV_A_ block);
/* update rt_now, do magic */
time_update (EV_A);
/* queue pending timers and reschedule them */
timers_reify (EV_A); /* relative timers called last */
periodics_reify (EV_A); /* absolute timers called first */
/* queue idle watchers unless io or timers are pending */
if (!pendingcnt)
queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
/* queue check watchers, to be executed first */
if (checkcnt)
queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
call_pending (EV_A);
}
while (activecnt && !loop_done);
if (loop_done != 2)
loop_done = 0;
}
void
ev_unloop (EV_P_ int how)
{
loop_done = how;
}
/*****************************************************************************/
inline void
wlist_add (WL *head, WL elem)
{
elem->next = *head;
*head = elem;
}
inline void
wlist_del (WL *head, WL elem)
{
while (*head)
{
if (*head == elem)
{
*head = elem->next;
return;
}
head = &(*head)->next;
}
}
inline void
ev_clear_pending (EV_P_ W w)
{
if (w->pending)
{
pendings [ABSPRI (w)][w->pending - 1].w = 0;
w->pending = 0;
}
}
inline void
ev_start (EV_P_ W w, int active)
{
if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
w->active = active;
ev_ref (EV_A);
}
inline void
ev_stop (EV_P_ W w)
{
ev_unref (EV_A);
w->active = 0;
}
/*****************************************************************************/
void
ev_io_start (EV_P_ struct ev_io *w)
{
int fd = w->fd;
if (ev_is_active (w))
return;
assert (("ev_io_start called with negative fd", fd >= 0));
ev_start (EV_A_ (W)w, 1);
array_needsize (anfds, anfdmax, fd + 1, anfds_init);
wlist_add ((WL *)&anfds[fd].head, (WL)w);
fd_change (EV_A_ fd);
}
void
ev_io_stop (EV_P_ struct ev_io *w)
{
ev_clear_pending (EV_A_ (W)w);
if (!ev_is_active (w))
return;
wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
ev_stop (EV_A_ (W)w);
fd_change (EV_A_ w->fd);
}
void
ev_timer_start (EV_P_ struct ev_timer *w)
{
if (ev_is_active (w))
return;
w->at += mn_now;
assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
ev_start (EV_A_ (W)w, ++timercnt);
array_needsize (timers, timermax, timercnt, );
timers [timercnt - 1] = w;
upheap ((WT *)timers, timercnt - 1);
}
void
ev_timer_stop (EV_P_ struct ev_timer *w)
{
ev_clear_pending (EV_A_ (W)w);
if (!ev_is_active (w))
return;
if (w->active < timercnt--)
{
timers [w->active - 1] = timers [timercnt];
downheap ((WT *)timers, timercnt, w->active - 1);
}
w->at = w->repeat;
ev_stop (EV_A_ (W)w);
}
void
ev_timer_again (EV_P_ struct ev_timer *w)
{
if (ev_is_active (w))
{
if (w->repeat)
{
w->at = mn_now + w->repeat;
downheap ((WT *)timers, timercnt, w->active - 1);
}
else
ev_timer_stop (EV_A_ w);
}
else if (w->repeat)
ev_timer_start (EV_A_ w);
}
void
ev_periodic_start (EV_P_ struct ev_periodic *w)
{
if (ev_is_active (w))
return;
assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
/* this formula differs from the one in periodic_reify because we do not always round up */
if (w->interval)
w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
ev_start (EV_A_ (W)w, ++periodiccnt);
array_needsize (periodics, periodicmax, periodiccnt, );
periodics [periodiccnt - 1] = w;
upheap ((WT *)periodics, periodiccnt - 1);
}
void
ev_periodic_stop (EV_P_ struct ev_periodic *w)
{
ev_clear_pending (EV_A_ (W)w);
if (!ev_is_active (w))
return;
if (w->active < periodiccnt--)
{
periodics [w->active - 1] = periodics [periodiccnt];
downheap ((WT *)periodics, periodiccnt, w->active - 1);
}
ev_stop (EV_A_ (W)w);
}
void
ev_idle_start (EV_P_ struct ev_idle *w)
{
if (ev_is_active (w))
return;
ev_start (EV_A_ (W)w, ++idlecnt);
array_needsize (idles, idlemax, idlecnt, );
idles [idlecnt - 1] = w;
}
void
ev_idle_stop (EV_P_ struct ev_idle *w)
{
ev_clear_pending (EV_A_ (W)w);
if (ev_is_active (w))
return;
idles [w->active - 1] = idles [--idlecnt];
ev_stop (EV_A_ (W)w);
}
void
ev_prepare_start (EV_P_ struct ev_prepare *w)
{
if (ev_is_active (w))
return;
ev_start (EV_A_ (W)w, ++preparecnt);
array_needsize (prepares, preparemax, preparecnt, );
prepares [preparecnt - 1] = w;
}
void
ev_prepare_stop (EV_P_ struct ev_prepare *w)
{
ev_clear_pending (EV_A_ (W)w);
if (ev_is_active (w))
return;
prepares [w->active - 1] = prepares [--preparecnt];
ev_stop (EV_A_ (W)w);
}
void
ev_check_start (EV_P_ struct ev_check *w)
{
if (ev_is_active (w))
return;
ev_start (EV_A_ (W)w, ++checkcnt);
array_needsize (checks, checkmax, checkcnt, );
checks [checkcnt - 1] = w;
}
void
ev_check_stop (EV_P_ struct ev_check *w)
{
ev_clear_pending (EV_A_ (W)w);
if (ev_is_active (w))
return;
checks [w->active - 1] = checks [--checkcnt];
ev_stop (EV_A_ (W)w);
}
#ifndef SA_RESTART
# define SA_RESTART 0
#endif
void
ev_signal_start (EV_P_ struct ev_signal *w)
{
#if EV_MULTIPLICITY
assert (("signal watchers are only supported in the default loop", loop == default_loop));
#endif
if (ev_is_active (w))
return;
assert (("ev_signal_start called with illegal signal number", w->signum > 0));
ev_start (EV_A_ (W)w, 1);
array_needsize (signals, signalmax, w->signum, signals_init);
wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
if (!w->next)
{
struct sigaction sa;
sa.sa_handler = sighandler;
sigfillset (&sa.sa_mask);
sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
sigaction (w->signum, &sa, 0);
}
}
void
ev_signal_stop (EV_P_ struct ev_signal *w)
{
ev_clear_pending (EV_A_ (W)w);
if (!ev_is_active (w))
return;
wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
ev_stop (EV_A_ (W)w);
if (!signals [w->signum - 1].head)
signal (w->signum, SIG_DFL);
}
void
ev_child_start (EV_P_ struct ev_child *w)
{
#if EV_MULTIPLICITY
assert (("child watchers are only supported in the default loop", loop == default_loop));
#endif
if (ev_is_active (w))
return;
ev_start (EV_A_ (W)w, 1);
wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
}
void
ev_child_stop (EV_P_ struct ev_child *w)
{
ev_clear_pending (EV_A_ (W)w);
if (ev_is_active (w))
return;
wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
ev_stop (EV_A_ (W)w);
}
/*****************************************************************************/
struct ev_once
{
struct ev_io io;
struct ev_timer to;
void (*cb)(int revents, void *arg);
void *arg;
};
static void
once_cb (EV_P_ struct ev_once *once, int revents)
{
void (*cb)(int revents, void *arg) = once->cb;
void *arg = once->arg;
ev_io_stop (EV_A_ &once->io);
ev_timer_stop (EV_A_ &once->to);
free (once);
cb (revents, arg);
}
static void
once_cb_io (EV_P_ struct ev_io *w, int revents)
{
once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
}
static void
once_cb_to (EV_P_ struct ev_timer *w, int revents)
{
once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
}
void
ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
{
struct ev_once *once = malloc (sizeof (struct ev_once));
if (!once)
cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
else
{
once->cb = cb;
once->arg = arg;
ev_watcher_init (&once->io, once_cb_io);
if (fd >= 0)
{
ev_io_set (&once->io, fd, events);
ev_io_start (EV_A_ &once->io);
}
ev_watcher_init (&once->to, once_cb_to);
if (timeout >= 0.)
{
ev_timer_set (&once->to, timeout, 0.);
ev_timer_start (EV_A_ &once->to);
}
}
}