2020-10-29 21:20:25 +00:00
|
|
|
|
#ifndef INCLUDED_ALGO_XXHASH_H
|
|
|
|
|
#define INCLUDED_ALGO_XXHASH_H
|
|
|
|
|
#include "first.h"
|
|
|
|
|
|
2020-09-05 05:43:37 +00:00
|
|
|
|
/*(lighttpd customization)*/
|
2020-09-06 01:43:19 +00:00
|
|
|
|
/*#define XXH_NO_INLINE_HINTS 1*/
|
2020-09-05 05:43:37 +00:00
|
|
|
|
/*#define XXH_REROLL 1*/
|
2020-09-06 01:43:19 +00:00
|
|
|
|
#define XXH_NO_LONG_LONG
|
2020-09-05 05:43:37 +00:00
|
|
|
|
|
2020-10-29 21:20:25 +00:00
|
|
|
|
|
|
|
|
|
#ifdef HAVE_XXHASH_H
|
|
|
|
|
|
|
|
|
|
#include <xxhash.h>
|
|
|
|
|
|
|
|
|
|
#else /* ! HAVE_XXHASH_H */
|
|
|
|
|
|
2020-09-05 04:39:14 +00:00
|
|
|
|
/*
|
|
|
|
|
* xxHash - Extremely Fast Hash algorithm
|
|
|
|
|
* Header File
|
|
|
|
|
* Copyright (C) 2012-2020 Yann Collet
|
|
|
|
|
*
|
|
|
|
|
* BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php)
|
|
|
|
|
*
|
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
|
* modification, are permitted provided that the following conditions are
|
|
|
|
|
* met:
|
|
|
|
|
*
|
|
|
|
|
* * Redistributions of source code must retain the above copyright
|
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
|
* * Redistributions in binary form must reproduce the above
|
|
|
|
|
* copyright notice, this list of conditions and the following disclaimer
|
|
|
|
|
* in the documentation and/or other materials provided with the
|
|
|
|
|
* distribution.
|
|
|
|
|
*
|
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
*
|
|
|
|
|
* You can contact the author at:
|
|
|
|
|
* - xxHash homepage: https://www.xxhash.com
|
|
|
|
|
* - xxHash source repository: https://github.com/Cyan4973/xxHash
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* TODO: update */
|
|
|
|
|
/* Notice extracted from xxHash homepage:
|
|
|
|
|
|
|
|
|
|
xxHash is an extremely fast hash algorithm, running at RAM speed limits.
|
|
|
|
|
It also successfully passes all tests from the SMHasher suite.
|
|
|
|
|
|
|
|
|
|
Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo @3GHz)
|
|
|
|
|
|
|
|
|
|
Name Speed Q.Score Author
|
|
|
|
|
xxHash 5.4 GB/s 10
|
|
|
|
|
CrapWow 3.2 GB/s 2 Andrew
|
|
|
|
|
MumurHash 3a 2.7 GB/s 10 Austin Appleby
|
|
|
|
|
SpookyHash 2.0 GB/s 10 Bob Jenkins
|
|
|
|
|
SBox 1.4 GB/s 9 Bret Mulvey
|
|
|
|
|
Lookup3 1.2 GB/s 9 Bob Jenkins
|
|
|
|
|
SuperFastHash 1.2 GB/s 1 Paul Hsieh
|
|
|
|
|
CityHash64 1.05 GB/s 10 Pike & Alakuijala
|
|
|
|
|
FNV 0.55 GB/s 5 Fowler, Noll, Vo
|
|
|
|
|
CRC32 0.43 GB/s 9
|
|
|
|
|
MD5-32 0.33 GB/s 10 Ronald L. Rivest
|
|
|
|
|
SHA1-32 0.28 GB/s 10
|
|
|
|
|
|
|
|
|
|
Q.Score is a measure of quality of the hash function.
|
|
|
|
|
It depends on successfully passing SMHasher test set.
|
|
|
|
|
10 is a perfect score.
|
|
|
|
|
|
|
|
|
|
Note: SMHasher's CRC32 implementation is not the fastest one.
|
|
|
|
|
Other speed-oriented implementations can be faster,
|
|
|
|
|
especially in combination with PCLMUL instruction:
|
|
|
|
|
https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html?showComment=1552696407071#c3490092340461170735
|
|
|
|
|
|
|
|
|
|
A 64-bit version, named XXH64, is available since r35.
|
|
|
|
|
It offers much better speed, but for 64-bit applications only.
|
|
|
|
|
Name Speed on 64 bits Speed on 32 bits
|
|
|
|
|
XXH64 13.8 GB/s 1.9 GB/s
|
|
|
|
|
XXH32 6.8 GB/s 6.0 GB/s
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
#if defined (__cplusplus)
|
|
|
|
|
extern "C" {
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* ****************************
|
|
|
|
|
* INLINE mode
|
|
|
|
|
******************************/
|
|
|
|
|
/*!
|
|
|
|
|
* XXH_INLINE_ALL (and XXH_PRIVATE_API)
|
|
|
|
|
* Use these build macros to inline xxhash into the target unit.
|
|
|
|
|
* Inlining improves performance on small inputs, especially when the length is
|
|
|
|
|
* expressed as a compile-time constant:
|
|
|
|
|
*
|
|
|
|
|
* https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html
|
|
|
|
|
*
|
|
|
|
|
* It also keeps xxHash symbols private to the unit, so they are not exported.
|
|
|
|
|
*
|
|
|
|
|
* Usage:
|
|
|
|
|
* #define XXH_INLINE_ALL
|
|
|
|
|
* #include "xxhash.h"
|
|
|
|
|
*
|
|
|
|
|
* Do not compile and link xxhash.o as a separate object, as it is not useful.
|
|
|
|
|
*/
|
|
|
|
|
#if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)) \
|
|
|
|
|
&& !defined(XXH_INLINE_ALL_31684351384)
|
|
|
|
|
/* this section should be traversed only once */
|
|
|
|
|
# define XXH_INLINE_ALL_31684351384
|
|
|
|
|
/* give access to the advanced API, required to compile implementations */
|
|
|
|
|
# undef XXH_STATIC_LINKING_ONLY /* avoid macro redef */
|
|
|
|
|
# define XXH_STATIC_LINKING_ONLY
|
|
|
|
|
/* make all functions private */
|
|
|
|
|
# undef XXH_PUBLIC_API
|
|
|
|
|
# if defined(__GNUC__)
|
|
|
|
|
# define XXH_PUBLIC_API static __inline __attribute__((unused))
|
|
|
|
|
# elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
|
|
|
|
|
# define XXH_PUBLIC_API static inline
|
|
|
|
|
# elif defined(_MSC_VER)
|
|
|
|
|
# define XXH_PUBLIC_API static __inline
|
|
|
|
|
# else
|
|
|
|
|
/* note: this version may generate warnings for unused static functions */
|
|
|
|
|
# define XXH_PUBLIC_API static
|
|
|
|
|
# endif
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* This part deals with the special case where a unit wants to inline xxHash,
|
|
|
|
|
* but "xxhash.h" has previously been included without XXH_INLINE_ALL, such
|
|
|
|
|
* as part of some previously included *.h header file.
|
|
|
|
|
* Without further action, the new include would just be ignored,
|
|
|
|
|
* and functions would effectively _not_ be inlined (silent failure).
|
|
|
|
|
* The following macros solve this situation by prefixing all inlined names,
|
|
|
|
|
* avoiding naming collision with previous inclusions.
|
|
|
|
|
*/
|
|
|
|
|
# ifdef XXH_NAMESPACE
|
|
|
|
|
# error "XXH_INLINE_ALL with XXH_NAMESPACE is not supported"
|
|
|
|
|
/*
|
|
|
|
|
* Note: Alternative: #undef all symbols (it's a pretty large list).
|
|
|
|
|
* Without #error: it compiles, but functions are actually not inlined.
|
|
|
|
|
*/
|
|
|
|
|
# endif
|
|
|
|
|
# define XXH_NAMESPACE XXH_INLINE_
|
|
|
|
|
/*
|
|
|
|
|
* Some identifiers (enums, type names) are not symbols, but they must
|
|
|
|
|
* still be renamed to avoid redeclaration.
|
|
|
|
|
* Alternative solution: do not redeclare them.
|
|
|
|
|
* However, this requires some #ifdefs, and is a more dispersed action.
|
|
|
|
|
* Meanwhile, renaming can be achieved in a single block
|
|
|
|
|
*/
|
|
|
|
|
# define XXH_IPREF(Id) XXH_INLINE_ ## Id
|
|
|
|
|
# define XXH_OK XXH_IPREF(XXH_OK)
|
|
|
|
|
# define XXH_ERROR XXH_IPREF(XXH_ERROR)
|
|
|
|
|
# define XXH_errorcode XXH_IPREF(XXH_errorcode)
|
|
|
|
|
# define XXH32_canonical_t XXH_IPREF(XXH32_canonical_t)
|
|
|
|
|
# define XXH64_canonical_t XXH_IPREF(XXH64_canonical_t)
|
|
|
|
|
# define XXH128_canonical_t XXH_IPREF(XXH128_canonical_t)
|
|
|
|
|
# define XXH32_state_s XXH_IPREF(XXH32_state_s)
|
|
|
|
|
# define XXH32_state_t XXH_IPREF(XXH32_state_t)
|
|
|
|
|
# define XXH64_state_s XXH_IPREF(XXH64_state_s)
|
|
|
|
|
# define XXH64_state_t XXH_IPREF(XXH64_state_t)
|
|
|
|
|
# define XXH3_state_s XXH_IPREF(XXH3_state_s)
|
|
|
|
|
# define XXH3_state_t XXH_IPREF(XXH3_state_t)
|
|
|
|
|
# define XXH128_hash_t XXH_IPREF(XXH128_hash_t)
|
|
|
|
|
/* Ensure the header is parsed again, even if it was previously included */
|
|
|
|
|
# undef XXHASH_H_5627135585666179
|
|
|
|
|
# undef XXHASH_H_STATIC_13879238742
|
|
|
|
|
#endif /* XXH_INLINE_ALL || XXH_PRIVATE_API */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* ****************************************************************
|
|
|
|
|
* Stable API
|
|
|
|
|
*****************************************************************/
|
|
|
|
|
#ifndef XXHASH_H_5627135585666179
|
|
|
|
|
#define XXHASH_H_5627135585666179 1
|
|
|
|
|
|
|
|
|
|
/* specific declaration modes for Windows */
|
|
|
|
|
#if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API)
|
|
|
|
|
# if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT))
|
|
|
|
|
# ifdef XXH_EXPORT
|
|
|
|
|
# define XXH_PUBLIC_API __declspec(dllexport)
|
|
|
|
|
# elif XXH_IMPORT
|
|
|
|
|
# define XXH_PUBLIC_API __declspec(dllimport)
|
|
|
|
|
# endif
|
|
|
|
|
# else
|
|
|
|
|
# define XXH_PUBLIC_API /* do nothing */
|
|
|
|
|
# endif
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
|
* XXH_NAMESPACE, aka Namespace Emulation:
|
|
|
|
|
*
|
|
|
|
|
* If you want to include _and expose_ xxHash functions from within your own
|
|
|
|
|
* library, but also want to avoid symbol collisions with other libraries which
|
|
|
|
|
* may also include xxHash, you can use XXH_NAMESPACE to automatically prefix
|
|
|
|
|
* any public symbol from xxhash library with the value of XXH_NAMESPACE
|
|
|
|
|
* (therefore, avoid empty or numeric values).
|
|
|
|
|
*
|
|
|
|
|
* Note that no change is required within the calling program as long as it
|
|
|
|
|
* includes `xxhash.h`: Regular symbol names will be automatically translated
|
|
|
|
|
* by this header.
|
|
|
|
|
*/
|
|
|
|
|
#ifdef XXH_NAMESPACE
|
|
|
|
|
# define XXH_CAT(A,B) A##B
|
|
|
|
|
# define XXH_NAME2(A,B) XXH_CAT(A,B)
|
|
|
|
|
# define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber)
|
|
|
|
|
/* XXH32 */
|
|
|
|
|
# define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32)
|
|
|
|
|
# define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState)
|
|
|
|
|
# define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState)
|
|
|
|
|
# define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset)
|
|
|
|
|
# define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update)
|
|
|
|
|
# define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest)
|
|
|
|
|
# define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState)
|
|
|
|
|
# define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash)
|
|
|
|
|
# define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical)
|
|
|
|
|
/* XXH64 */
|
|
|
|
|
# define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64)
|
|
|
|
|
# define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState)
|
|
|
|
|
# define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState)
|
|
|
|
|
# define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset)
|
|
|
|
|
# define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update)
|
|
|
|
|
# define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest)
|
|
|
|
|
# define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState)
|
|
|
|
|
# define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash)
|
|
|
|
|
# define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical)
|
|
|
|
|
/* XXH3_64bits */
|
|
|
|
|
# define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits)
|
|
|
|
|
# define XXH3_64bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret)
|
|
|
|
|
# define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed)
|
|
|
|
|
# define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState)
|
|
|
|
|
# define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState)
|
|
|
|
|
# define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState)
|
|
|
|
|
# define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset)
|
|
|
|
|
# define XXH3_64bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed)
|
|
|
|
|
# define XXH3_64bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret)
|
|
|
|
|
# define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update)
|
|
|
|
|
# define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest)
|
|
|
|
|
# define XXH3_generateSecret XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret)
|
|
|
|
|
/* XXH3_128bits */
|
|
|
|
|
# define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128)
|
|
|
|
|
# define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits)
|
|
|
|
|
# define XXH3_128bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed)
|
|
|
|
|
# define XXH3_128bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret)
|
|
|
|
|
# define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset)
|
|
|
|
|
# define XXH3_128bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed)
|
|
|
|
|
# define XXH3_128bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret)
|
|
|
|
|
# define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update)
|
|
|
|
|
# define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest)
|
|
|
|
|
# define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual)
|
|
|
|
|
# define XXH128_cmp XXH_NAME2(XXH_NAMESPACE, XXH128_cmp)
|
|
|
|
|
# define XXH128_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash)
|
|
|
|
|
# define XXH128_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical)
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* *************************************
|
|
|
|
|
* Version
|
|
|
|
|
***************************************/
|
|
|
|
|
#define XXH_VERSION_MAJOR 0
|
|
|
|
|
#define XXH_VERSION_MINOR 8
|
|
|
|
|
#define XXH_VERSION_RELEASE 0
|
|
|
|
|
#define XXH_VERSION_NUMBER (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE)
|
|
|
|
|
XXH_PUBLIC_API unsigned XXH_versionNumber (void);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* ****************************
|
|
|
|
|
* Definitions
|
|
|
|
|
******************************/
|
|
|
|
|
#include <stddef.h> /* size_t */
|
|
|
|
|
typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*-**********************************************************************
|
|
|
|
|
* 32-bit hash
|
|
|
|
|
************************************************************************/
|
|
|
|
|
#if !defined (__VMS) \
|
|
|
|
|
&& (defined (__cplusplus) \
|
|
|
|
|
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
|
|
|
|
|
# include <stdint.h>
|
|
|
|
|
typedef uint32_t XXH32_hash_t;
|
|
|
|
|
#else
|
|
|
|
|
# include <limits.h>
|
|
|
|
|
# if UINT_MAX == 0xFFFFFFFFUL
|
|
|
|
|
typedef unsigned int XXH32_hash_t;
|
|
|
|
|
# else
|
|
|
|
|
# if ULONG_MAX == 0xFFFFFFFFUL
|
|
|
|
|
typedef unsigned long XXH32_hash_t;
|
|
|
|
|
# else
|
|
|
|
|
# error "unsupported platform: need a 32-bit type"
|
|
|
|
|
# endif
|
|
|
|
|
# endif
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
|
* XXH32():
|
|
|
|
|
* Calculate the 32-bit hash of sequence "length" bytes stored at memory address "input".
|
|
|
|
|
* The memory between input & input+length must be valid (allocated and read-accessible).
|
|
|
|
|
* "seed" can be used to alter the result predictably.
|
|
|
|
|
* Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark): 5.4 GB/s
|
|
|
|
|
*
|
|
|
|
|
* Note: XXH3 provides competitive speed for both 32-bit and 64-bit systems,
|
|
|
|
|
* and offers true 64/128 bit hash results. It provides a superior level of
|
|
|
|
|
* dispersion, and greatly reduces the risks of collisions.
|
|
|
|
|
*/
|
|
|
|
|
XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed);
|
|
|
|
|
|
|
|
|
|
/******* Streaming *******/
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Streaming functions generate the xxHash value from an incrememtal input.
|
|
|
|
|
* This method is slower than single-call functions, due to state management.
|
|
|
|
|
* For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized.
|
|
|
|
|
*
|
|
|
|
|
* An XXH state must first be allocated using `XXH*_createState()`.
|
|
|
|
|
*
|
|
|
|
|
* Start a new hash by initializing the state with a seed using `XXH*_reset()`.
|
|
|
|
|
*
|
|
|
|
|
* Then, feed the hash state by calling `XXH*_update()` as many times as necessary.
|
|
|
|
|
*
|
|
|
|
|
* The function returns an error code, with 0 meaning OK, and any other value
|
|
|
|
|
* meaning there is an error.
|
|
|
|
|
*
|
|
|
|
|
* Finally, a hash value can be produced anytime, by using `XXH*_digest()`.
|
|
|
|
|
* This function returns the nn-bits hash as an int or long long.
|
|
|
|
|
*
|
|
|
|
|
* It's still possible to continue inserting input into the hash state after a
|
|
|
|
|
* digest, and generate new hash values later on by invoking `XXH*_digest()`.
|
|
|
|
|
*
|
|
|
|
|
* When done, release the state using `XXH*_freeState()`.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
typedef struct XXH32_state_s XXH32_state_t; /* incomplete type */
|
|
|
|
|
XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void);
|
|
|
|
|
XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr);
|
|
|
|
|
XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dst_state, const XXH32_state_t* src_state);
|
|
|
|
|
|
|
|
|
|
XXH_PUBLIC_API XXH_errorcode XXH32_reset (XXH32_state_t* statePtr, XXH32_hash_t seed);
|
|
|
|
|
XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length);
|
|
|
|
|
XXH_PUBLIC_API XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr);
|
|
|
|
|
|
|
|
|
|
/******* Canonical representation *******/
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* The default return values from XXH functions are unsigned 32 and 64 bit
|
|
|
|
|
* integers.
|
|
|
|
|
* This the simplest and fastest format for further post-processing.
|
|
|
|
|
*
|
|
|
|
|
* However, this leaves open the question of what is the order on the byte level,
|
|
|
|
|
* since little and big endian conventions will store the same number differently.
|
|
|
|
|
*
|
|
|
|
|
* The canonical representation settles this issue by mandating big-endian
|
|
|
|
|
* convention, the same convention as human-readable numbers (large digits first).
|
|
|
|
|
*
|
|
|
|
|
* When writing hash values to storage, sending them over a network, or printing
|
|
|
|
|
* them, it's highly recommended to use the canonical representation to ensure
|
|
|
|
|
* portability across a wider range of systems, present and future.
|
|
|
|
|
*
|
|
|
|
|
* The following functions allow transformation of hash values to and from
|
|
|
|
|
* canonical format.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
typedef struct { unsigned char digest[4]; } XXH32_canonical_t;
|
|
|
|
|
XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash);
|
|
|
|
|
XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef XXH_NO_LONG_LONG
|
|
|
|
|
/*-**********************************************************************
|
|
|
|
|
* 64-bit hash
|
|
|
|
|
************************************************************************/
|
|
|
|
|
#if !defined (__VMS) \
|
|
|
|
|
&& (defined (__cplusplus) \
|
|
|
|
|
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
|
|
|
|
|
# include <stdint.h>
|
|
|
|
|
typedef uint64_t XXH64_hash_t;
|
|
|
|
|
#else
|
|
|
|
|
/* the following type must have a width of 64-bit */
|
|
|
|
|
typedef unsigned long long XXH64_hash_t;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
|
* XXH64():
|
|
|
|
|
* Returns the 64-bit hash of sequence of length @length stored at memory
|
|
|
|
|
* address @input.
|
|
|
|
|
* @seed can be used to alter the result predictably.
|
|
|
|
|
*
|
|
|
|
|
* This function usually runs faster on 64-bit systems, but slower on 32-bit
|
|
|
|
|
* systems (see benchmark).
|
|
|
|
|
*
|
|
|
|
|
* Note: XXH3 provides competitive speed for both 32-bit and 64-bit systems,
|
|
|
|
|
* and offers true 64/128 bit hash results. It provides a superior level of
|
|
|
|
|
* dispersion, and greatly reduces the risks of collisions.
|
|
|
|
|
*/
|
|
|
|
|
XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t length, XXH64_hash_t seed);
|
|
|
|
|
|
|
|
|
|
/******* Streaming *******/
|
|
|
|
|
typedef struct XXH64_state_s XXH64_state_t; /* incomplete type */
|
|
|
|
|
XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void);
|
|
|
|
|
XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr);
|
|
|
|
|
XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dst_state, const XXH64_state_t* src_state);
|
|
|
|
|
|
|
|
|
|
XXH_PUBLIC_API XXH_errorcode XXH64_reset (XXH64_state_t* statePtr, XXH64_hash_t seed);
|
|
|
|
|
XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* statePtr, const void* input, size_t length);
|
|
|
|
|
XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* statePtr);
|
|
|
|
|
|
|
|
|
|
/******* Canonical representation *******/
|
|
|
|
|
typedef struct { unsigned char digest[sizeof(XXH64_hash_t)]; } XXH64_canonical_t;
|
|
|
|
|
XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash);
|
|
|
|
|
XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*-**********************************************************************
|
|
|
|
|
* XXH3 64-bit variant
|
|
|
|
|
************************************************************************/
|
|
|
|
|
|
|
|
|
|
/* ************************************************************************
|
|
|
|
|
* XXH3 is a new hash algorithm featuring:
|
|
|
|
|
* - Improved speed for both small and large inputs
|
|
|
|
|
* - True 64-bit and 128-bit outputs
|
|
|
|
|
* - SIMD acceleration
|
|
|
|
|
* - Improved 32-bit viability
|
|
|
|
|
*
|
|
|
|
|
* Speed analysis methodology is explained here:
|
|
|
|
|
*
|
|
|
|
|
* https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html
|
|
|
|
|
*
|
|
|
|
|
* In general, expect XXH3 to run about ~2x faster on large inputs and >3x
|
|
|
|
|
* faster on small ones compared to XXH64, though exact differences depend on
|
|
|
|
|
* the platform.
|
|
|
|
|
*
|
|
|
|
|
* The algorithm is portable: Like XXH32 and XXH64, it generates the same hash
|
|
|
|
|
* on all platforms.
|
|
|
|
|
*
|
|
|
|
|
* It benefits greatly from SIMD and 64-bit arithmetic, but does not require it.
|
|
|
|
|
*
|
|
|
|
|
* Almost all 32-bit and 64-bit targets that can run XXH32 smoothly can run
|
|
|
|
|
* XXH3 at competitive speeds, even if XXH64 runs slowly. Further details are
|
|
|
|
|
* explained in the implementation.
|
|
|
|
|
*
|
|
|
|
|
* Optimized implementations are provided for AVX512, AVX2, SSE2, NEON, POWER8,
|
|
|
|
|
* ZVector and scalar targets. This can be controlled with the XXH_VECTOR macro.
|
|
|
|
|
*
|
|
|
|
|
* XXH3 offers 2 variants, _64bits and _128bits.
|
|
|
|
|
* When only 64 bits are needed, prefer calling the _64bits variant, as it
|
|
|
|
|
* reduces the amount of mixing, resulting in faster speed on small inputs.
|
|
|
|
|
*
|
|
|
|
|
* It's also generally simpler to manipulate a scalar return type than a struct.
|
|
|
|
|
*
|
|
|
|
|
* The 128-bit version adds additional strength, but it is slightly slower.
|
|
|
|
|
*
|
|
|
|
|
* The XXH3 algorithm is still in development.
|
|
|
|
|
* The results it produces may still change in future versions.
|
|
|
|
|
*
|
|
|
|
|
* Results produced by v0.7.x are not comparable with results from v0.7.y.
|
|
|
|
|
* However, the API is completely stable, and it can safely be used for
|
|
|
|
|
* ephemeral data (local sessions).
|
|
|
|
|
*
|
|
|
|
|
* Avoid storing values in long-term storage until the algorithm is finalized.
|
|
|
|
|
* XXH3's return values will be officially finalized upon reaching v0.8.0.
|
|
|
|
|
*
|
|
|
|
|
* After which, return values of XXH3 and XXH128 will no longer change in
|
|
|
|
|
* future versions.
|
|
|
|
|
*
|
|
|
|
|
* The API supports one-shot hashing, streaming mode, and custom secrets.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* XXH3_64bits():
|
|
|
|
|
* default 64-bit variant, using default secret and default seed of 0.
|
|
|
|
|
* It's the fastest variant. */
|
|
|
|
|
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* data, size_t len);
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* XXH3_64bits_withSeed():
|
|
|
|
|
* This variant generates a custom secret on the fly
|
|
|
|
|
* based on default secret altered using the `seed` value.
|
|
|
|
|
* While this operation is decently fast, note that it's not completely free.
|
|
|
|
|
* Note: seed==0 produces the same results as XXH3_64bits().
|
|
|
|
|
*/
|
|
|
|
|
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSeed(const void* data, size_t len, XXH64_hash_t seed);
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* XXH3_64bits_withSecret():
|
|
|
|
|
* It's possible to provide any blob of bytes as a "secret" to generate the hash.
|
|
|
|
|
* This makes it more difficult for an external actor to prepare an intentional collision.
|
|
|
|
|
* The main condition is that secretSize *must* be large enough (>= XXH3_SECRET_SIZE_MIN).
|
|
|
|
|
* However, the quality of produced hash values depends on secret's entropy.
|
|
|
|
|
* Technically, the secret must look like a bunch of random bytes.
|
|
|
|
|
* Avoid "trivial" or structured data such as repeated sequences or a text document.
|
|
|
|
|
* Whenever unsure about the "randomness" of the blob of bytes,
|
|
|
|
|
* consider relabelling it as a "custom seed" instead,
|
|
|
|
|
* and employ "XXH3_generateSecret()" (see below)
|
|
|
|
|
* to generate a high entropy secret derived from the custom seed.
|
|
|
|
|
*/
|
|
|
|
|
#define XXH3_SECRET_SIZE_MIN 136
|
|
|
|
|
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/******* Streaming *******/
|
|
|
|
|
/*
|
|
|
|
|
* Streaming requires state maintenance.
|
|
|
|
|
* This operation costs memory and CPU.
|
|
|
|
|
* As a consequence, streaming is slower than one-shot hashing.
|
|
|
|
|
* For better performance, prefer one-shot functions whenever applicable.
|
|
|
|
|
*/
|
|
|
|
|
typedef struct XXH3_state_s XXH3_state_t;
|
|
|
|
|
XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void);
|
|
|
|
|
XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr);
|
|
|
|
|
XXH_PUBLIC_API void XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state);
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* XXH3_64bits_reset():
|
|
|
|
|
* Initialize with default parameters.
|
|
|
|
|
* digest will be equivalent to `XXH3_64bits()`.
|
|
|
|
|
*/
|
|
|
|
|
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH3_state_t* statePtr);
|
|
|
|
|
/*
|
|
|
|
|
* XXH3_64bits_reset_withSeed():
|
|
|
|
|
* Generate a custom secret from `seed`, and store it into `statePtr`.
|
|
|
|
|
* digest will be equivalent to `XXH3_64bits_withSeed()`.
|
|
|
|
|
*/
|
|
|
|
|
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed);
|
|
|
|
|
/*
|
|
|
|
|
* XXH3_64bits_reset_withSecret():
|
|
|
|
|
* `secret` is referenced, it _must outlive_ the hash streaming session.
|
|
|
|
|
* Similar to one-shot API, `secretSize` must be >= `XXH3_SECRET_SIZE_MIN`,
|
|
|
|
|
* and the quality of produced hash values depends on secret's entropy
|
|
|
|
|
* (secret's content should look like a bunch of random bytes).
|
|
|
|
|
* When in doubt about the randomness of a candidate `secret`,
|
|
|
|
|
* consider employing `XXH3_generateSecret()` instead (see below).
|
|
|
|
|
*/
|
|
|
|
|
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize);
|
|
|
|
|
|
|
|
|
|
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH3_state_t* statePtr, const void* input, size_t length);
|
|
|
|
|
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* statePtr);
|
|
|
|
|
|
|
|
|
|
/* note : canonical representation of XXH3 is the same as XXH64
|
|
|
|
|
* since they both produce XXH64_hash_t values */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*-**********************************************************************
|
|
|
|
|
* XXH3 128-bit variant
|
|
|
|
|
************************************************************************/
|
|
|
|
|
|
|
|
|
|
typedef struct {
|
|
|
|
|
XXH64_hash_t low64;
|
|
|
|
|
XXH64_hash_t high64;
|
|
|
|
|
} XXH128_hash_t;
|
|
|
|
|
|
|
|
|
|
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* data, size_t len);
|
|
|
|
|
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSeed(const void* data, size_t len, XXH64_hash_t seed);
|
|
|
|
|
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize);
|
|
|
|
|
|
|
|
|
|
/******* Streaming *******/
|
|
|
|
|
/*
|
|
|
|
|
* Streaming requires state maintenance.
|
|
|
|
|
* This operation costs memory and CPU.
|
|
|
|
|
* As a consequence, streaming is slower than one-shot hashing.
|
|
|
|
|
* For better performance, prefer one-shot functions whenever applicable.
|
|
|
|
|
*
|
|
|
|
|
* XXH3_128bits uses the same XXH3_state_t as XXH3_64bits().
|
|
|
|
|
* Use already declared XXH3_createState() and XXH3_freeState().
|
|
|
|
|
*
|
|
|
|
|
* All reset and streaming functions have same meaning as their 64-bit counterpart.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH3_state_t* statePtr);
|
|
|
|
|
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed);
|
|
|
|
|
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize);
|
|
|
|
|
|
|
|
|
|
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH3_state_t* statePtr, const void* input, size_t length);
|
|
|
|
|
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* statePtr);
|
|
|
|
|
|
|
|
|
|
/* Following helper functions make it possible to compare XXH128_hast_t values.
|
|
|
|
|
* Since XXH128_hash_t is a structure, this capability is not offered by the language.
|
|
|
|
|
* Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
|
* XXH128_isEqual():
|
|
|
|
|
* Return: 1 if `h1` and `h2` are equal, 0 if they are not.
|
|
|
|
|
*/
|
|
|
|
|
XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2);
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
|
* XXH128_cmp():
|
|
|
|
|
*
|
|
|
|
|
* This comparator is compatible with stdlib's `qsort()`/`bsearch()`.
|
|
|
|
|
*
|
|
|
|
|
* return: >0 if *h128_1 > *h128_2
|
|
|
|
|
* =0 if *h128_1 == *h128_2
|
|
|
|
|
* <0 if *h128_1 < *h128_2
|
|
|
|
|
*/
|
|
|
|
|
XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/******* Canonical representation *******/
|
|
|
|
|
typedef struct { unsigned char digest[sizeof(XXH128_hash_t)]; } XXH128_canonical_t;
|
|
|
|
|
XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash);
|
|
|
|
|
XXH_PUBLIC_API XXH128_hash_t XXH128_hashFromCanonical(const XXH128_canonical_t* src);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#endif /* XXH_NO_LONG_LONG */
|
|
|
|
|
|
|
|
|
|
#endif /* XXHASH_H_5627135585666179 */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742)
|
|
|
|
|
#define XXHASH_H_STATIC_13879238742
|
|
|
|
|
/* ****************************************************************************
|
|
|
|
|
* This section contains declarations which are not guaranteed to remain stable.
|
|
|
|
|
* They may change in future versions, becoming incompatible with a different
|
|
|
|
|
* version of the library.
|
|
|
|
|
* These declarations should only be used with static linking.
|
|
|
|
|
* Never use them in association with dynamic linking!
|
|
|
|
|
***************************************************************************** */
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* These definitions are only present to allow static allocation
|
|
|
|
|
* of XXH states, on stack or in a struct, for example.
|
|
|
|
|
* Never **ever** access their members directly.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
struct XXH32_state_s {
|
|
|
|
|
XXH32_hash_t total_len_32;
|
|
|
|
|
XXH32_hash_t large_len;
|
|
|
|
|
XXH32_hash_t v1;
|
|
|
|
|
XXH32_hash_t v2;
|
|
|
|
|
XXH32_hash_t v3;
|
|
|
|
|
XXH32_hash_t v4;
|
|
|
|
|
XXH32_hash_t mem32[4];
|
|
|
|
|
XXH32_hash_t memsize;
|
|
|
|
|
XXH32_hash_t reserved; /* never read nor write, might be removed in a future version */
|
|
|
|
|
}; /* typedef'd to XXH32_state_t */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef XXH_NO_LONG_LONG /* defined when there is no 64-bit support */
|
|
|
|
|
|
|
|
|
|
struct XXH64_state_s {
|
|
|
|
|
XXH64_hash_t total_len;
|
|
|
|
|
XXH64_hash_t v1;
|
|
|
|
|
XXH64_hash_t v2;
|
|
|
|
|
XXH64_hash_t v3;
|
|
|
|
|
XXH64_hash_t v4;
|
|
|
|
|
XXH64_hash_t mem64[4];
|
|
|
|
|
XXH32_hash_t memsize;
|
|
|
|
|
XXH32_hash_t reserved32; /* required for padding anyway */
|
|
|
|
|
XXH64_hash_t reserved64; /* never read nor write, might be removed in a future version */
|
|
|
|
|
}; /* typedef'd to XXH64_state_t */
|
|
|
|
|
|
|
|
|
|
#if defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* C11+ */
|
|
|
|
|
# include <stdalign.h>
|
|
|
|
|
# define XXH_ALIGN(n) alignas(n)
|
|
|
|
|
#elif defined(__GNUC__)
|
|
|
|
|
# define XXH_ALIGN(n) __attribute__ ((aligned(n)))
|
|
|
|
|
#elif defined(_MSC_VER)
|
|
|
|
|
# define XXH_ALIGN(n) __declspec(align(n))
|
|
|
|
|
#else
|
|
|
|
|
# define XXH_ALIGN(n) /* disabled */
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Old GCC versions only accept the attribute after the type in structures. */
|
|
|
|
|
#if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)) /* C11+ */ \
|
|
|
|
|
&& defined(__GNUC__)
|
|
|
|
|
# define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align)
|
|
|
|
|
#else
|
|
|
|
|
# define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#define XXH3_INTERNALBUFFER_SIZE 256
|
|
|
|
|
#define XXH3_SECRET_DEFAULT_SIZE 192
|
|
|
|
|
struct XXH3_state_s {
|
|
|
|
|
XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]);
|
|
|
|
|
/* used to store a custom secret generated from a seed */
|
|
|
|
|
XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]);
|
|
|
|
|
XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]);
|
|
|
|
|
XXH32_hash_t bufferedSize;
|
|
|
|
|
XXH32_hash_t reserved32;
|
|
|
|
|
size_t nbStripesSoFar;
|
|
|
|
|
XXH64_hash_t totalLen;
|
|
|
|
|
size_t nbStripesPerBlock;
|
|
|
|
|
size_t secretLimit;
|
|
|
|
|
XXH64_hash_t seed;
|
|
|
|
|
XXH64_hash_t reserved64;
|
|
|
|
|
const unsigned char* extSecret; /* reference to external secret;
|
|
|
|
|
* if == NULL, use .customSecret instead */
|
|
|
|
|
/* note: there may be some padding at the end due to alignment on 64 bytes */
|
|
|
|
|
}; /* typedef'd to XXH3_state_t */
|
|
|
|
|
|
|
|
|
|
#undef XXH_ALIGN_MEMBER
|
|
|
|
|
|
|
|
|
|
/* When the XXH3_state_t structure is merely emplaced on stack,
|
|
|
|
|
* it should be initialized with XXH3_INITSTATE() or a memset()
|
|
|
|
|
* in case its first reset uses XXH3_NNbits_reset_withSeed().
|
|
|
|
|
* This init can be omitted if the first reset uses default or _withSecret mode.
|
|
|
|
|
* This operation isn't necessary when the state is created with XXH3_createState().
|
|
|
|
|
* Note that this doesn't prepare the state for a streaming operation,
|
|
|
|
|
* it's still necessary to use XXH3_NNbits_reset*() afterwards.
|
|
|
|
|
*/
|
|
|
|
|
#define XXH3_INITSTATE(XXH3_state_ptr) { (XXH3_state_ptr)->seed = 0; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* === Experimental API === */
|
|
|
|
|
/* Symbols defined below must be considered tied to a specific library version. */
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* XXH3_generateSecret():
|
|
|
|
|
*
|
|
|
|
|
* Derive a high-entropy secret from any user-defined content, named customSeed.
|
|
|
|
|
* The generated secret can be used in combination with `*_withSecret()` functions.
|
|
|
|
|
* The `_withSecret()` variants are useful to provide a higher level of protection than 64-bit seed,
|
|
|
|
|
* as it becomes much more difficult for an external actor to guess how to impact the calculation logic.
|
|
|
|
|
*
|
|
|
|
|
* The function accepts as input a custom seed of any length and any content,
|
|
|
|
|
* and derives from it a high-entropy secret of length XXH3_SECRET_DEFAULT_SIZE
|
|
|
|
|
* into an already allocated buffer secretBuffer.
|
|
|
|
|
* The generated secret is _always_ XXH_SECRET_DEFAULT_SIZE bytes long.
|
|
|
|
|
*
|
|
|
|
|
* The generated secret can then be used with any `*_withSecret()` variant.
|
|
|
|
|
* Functions `XXH3_128bits_withSecret()`, `XXH3_64bits_withSecret()`,
|
|
|
|
|
* `XXH3_128bits_reset_withSecret()` and `XXH3_64bits_reset_withSecret()`
|
|
|
|
|
* are part of this list. They all accept a `secret` parameter
|
|
|
|
|
* which must be very long for implementation reasons (>= XXH3_SECRET_SIZE_MIN)
|
|
|
|
|
* _and_ feature very high entropy (consist of random-looking bytes).
|
|
|
|
|
* These conditions can be a high bar to meet, so
|
|
|
|
|
* this function can be used to generate a secret of proper quality.
|
|
|
|
|
*
|
|
|
|
|
* customSeed can be anything. It can have any size, even small ones,
|
|
|
|
|
* and its content can be anything, even stupidly "low entropy" source such as a bunch of zeroes.
|
|
|
|
|
* The resulting `secret` will nonetheless provide all expected qualities.
|
|
|
|
|
*
|
|
|
|
|
* Supplying NULL as the customSeed copies the default secret into `secretBuffer`.
|
|
|
|
|
* When customSeedSize > 0, supplying NULL as customSeed is undefined behavior.
|
|
|
|
|
*/
|
|
|
|
|
XXH_PUBLIC_API void XXH3_generateSecret(void* secretBuffer, const void* customSeed, size_t customSeedSize);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* simple short-cut to pre-selected XXH3_128bits variant */
|
|
|
|
|
XXH_PUBLIC_API XXH128_hash_t XXH128(const void* data, size_t len, XXH64_hash_t seed);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#endif /* XXH_NO_LONG_LONG */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)
|
|
|
|
|
# define XXH_IMPLEMENTATION
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#endif /* defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* ======================================================================== */
|
|
|
|
|
/* ======================================================================== */
|
|
|
|
|
/* ======================================================================== */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*-**********************************************************************
|
|
|
|
|
* xxHash implementation
|
|
|
|
|
*-**********************************************************************
|
|
|
|
|
* xxHash's implementation used to be hosted inside xxhash.c.
|
|
|
|
|
*
|
|
|
|
|
* However, inlining requires implementation to be visible to the compiler,
|
|
|
|
|
* hence be included alongside the header.
|
|
|
|
|
* Previously, implementation was hosted inside xxhash.c,
|
|
|
|
|
* which was then #included when inlining was activated.
|
|
|
|
|
* This construction created issues with a few build and install systems,
|
|
|
|
|
* as it required xxhash.c to be stored in /include directory.
|
|
|
|
|
*
|
|
|
|
|
* xxHash implementation is now directly integrated within xxhash.h.
|
|
|
|
|
* As a consequence, xxhash.c is no longer needed in /include.
|
|
|
|
|
*
|
|
|
|
|
* xxhash.c is still available and is still useful.
|
|
|
|
|
* In a "normal" setup, when xxhash is not inlined,
|
|
|
|
|
* xxhash.h only exposes the prototypes and public symbols,
|
|
|
|
|
* while xxhash.c can be built into an object file xxhash.o
|
|
|
|
|
* which can then be linked into the final binary.
|
|
|
|
|
************************************************************************/
|
|
|
|
|
|
|
|
|
|
#if ( defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) \
|
|
|
|
|
|| defined(XXH_IMPLEMENTATION) ) && !defined(XXH_IMPLEM_13a8737387)
|
|
|
|
|
# define XXH_IMPLEM_13a8737387
|
|
|
|
|
|
|
|
|
|
/* *************************************
|
|
|
|
|
* Tuning parameters
|
|
|
|
|
***************************************/
|
|
|
|
|
/*!
|
|
|
|
|
* XXH_FORCE_MEMORY_ACCESS:
|
|
|
|
|
* By default, access to unaligned memory is controlled by `memcpy()`, which is
|
|
|
|
|
* safe and portable.
|
|
|
|
|
*
|
|
|
|
|
* Unfortunately, on some target/compiler combinations, the generated assembly
|
|
|
|
|
* is sub-optimal.
|
|
|
|
|
*
|
|
|
|
|
* The below switch allow selection of a different access method
|
|
|
|
|
* in the search for improved performance.
|
|
|
|
|
* Method 0 (default):
|
|
|
|
|
* Use `memcpy()`. Safe and portable. Default.
|
|
|
|
|
* Method 1:
|
|
|
|
|
* `__attribute__((packed))` statement. It depends on compiler extensions
|
|
|
|
|
* and is therefore not portable.
|
|
|
|
|
* This method is safe if your compiler supports it, and *generally* as
|
|
|
|
|
* fast or faster than `memcpy`.
|
|
|
|
|
* Method 2:
|
|
|
|
|
* Direct access via cast. This method doesn't depend on the compiler but
|
|
|
|
|
* violates the C standard.
|
|
|
|
|
* It can generate buggy code on targets which do not support unaligned
|
|
|
|
|
* memory accesses.
|
|
|
|
|
* But in some circumstances, it's the only known way to get the most
|
|
|
|
|
* performance (example: GCC + ARMv6)
|
|
|
|
|
* Method 3:
|
|
|
|
|
* Byteshift. This can generate the best code on old compilers which don't
|
|
|
|
|
* inline small `memcpy()` calls, and it might also be faster on big-endian
|
|
|
|
|
* systems which lack a native byteswap instruction.
|
|
|
|
|
* See https://stackoverflow.com/a/32095106/646947 for details.
|
|
|
|
|
* Prefer these methods in priority order (0 > 1 > 2 > 3)
|
|
|
|
|
*/
|
|
|
|
|
#ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
|
|
|
|
|
# if !defined(__clang__) && defined(__GNUC__) && defined(__ARM_FEATURE_UNALIGNED) && defined(__ARM_ARCH) && (__ARM_ARCH == 6)
|
|
|
|
|
# define XXH_FORCE_MEMORY_ACCESS 2
|
|
|
|
|
# elif !defined(__clang__) && ((defined(__INTEL_COMPILER) && !defined(_WIN32)) || \
|
|
|
|
|
(defined(__GNUC__) && (defined(__ARM_ARCH) && __ARM_ARCH >= 7)))
|
|
|
|
|
# define XXH_FORCE_MEMORY_ACCESS 1
|
|
|
|
|
# endif
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
|
* XXH_ACCEPT_NULL_INPUT_POINTER:
|
|
|
|
|
* If the input pointer is NULL, xxHash's default behavior is to dereference it,
|
|
|
|
|
* triggering a segfault.
|
|
|
|
|
* When this macro is enabled, xxHash actively checks the input for a null pointer.
|
|
|
|
|
* If it is, the result for null input pointers is the same as a zero-length input.
|
|
|
|
|
*/
|
|
|
|
|
#ifndef XXH_ACCEPT_NULL_INPUT_POINTER /* can be defined externally */
|
|
|
|
|
# define XXH_ACCEPT_NULL_INPUT_POINTER 0
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
|
* XXH_FORCE_ALIGN_CHECK:
|
|
|
|
|
* This is an important performance trick
|
|
|
|
|
* for architectures without decent unaligned memory access performance.
|
|
|
|
|
* It checks for input alignment, and when conditions are met,
|
|
|
|
|
* uses a "fast path" employing direct 32-bit/64-bit read,
|
|
|
|
|
* resulting in _dramatically faster_ read speed.
|
|
|
|
|
*
|
|
|
|
|
* The check costs one initial branch per hash, which is generally negligible, but not zero.
|
|
|
|
|
* Moreover, it's not useful to generate binary for an additional code path
|
|
|
|
|
* if memory access uses same instruction for both aligned and unaligned adresses.
|
|
|
|
|
*
|
|
|
|
|
* In these cases, the alignment check can be removed by setting this macro to 0.
|
|
|
|
|
* Then the code will always use unaligned memory access.
|
|
|
|
|
* Align check is automatically disabled on x86, x64 & arm64,
|
|
|
|
|
* which are platforms known to offer good unaligned memory accesses performance.
|
|
|
|
|
*
|
|
|
|
|
* This option does not affect XXH3 (only XXH32 and XXH64).
|
|
|
|
|
*/
|
|
|
|
|
#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
|
|
|
|
|
# if defined(__i386) || defined(__x86_64__) || defined(__aarch64__) \
|
|
|
|
|
|| defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM64) /* visual */
|
|
|
|
|
# define XXH_FORCE_ALIGN_CHECK 0
|
|
|
|
|
# else
|
|
|
|
|
# define XXH_FORCE_ALIGN_CHECK 1
|
|
|
|
|
# endif
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
|
* XXH_NO_INLINE_HINTS:
|
|
|
|
|
*
|
|
|
|
|
* By default, xxHash tries to force the compiler to inline almost all internal
|
|
|
|
|
* functions.
|
|
|
|
|
*
|
|
|
|
|
* This can usually improve performance due to reduced jumping and improved
|
|
|
|
|
* constant folding, but significantly increases the size of the binary which
|
|
|
|
|
* might not be favorable.
|
|
|
|
|
*
|
|
|
|
|
* Additionally, sometimes the forced inlining can be detrimental to performance,
|
|
|
|
|
* depending on the architecture.
|
|
|
|
|
*
|
|
|
|
|
* XXH_NO_INLINE_HINTS marks all internal functions as static, giving the
|
|
|
|
|
* compiler full control on whether to inline or not.
|
|
|
|
|
*
|
|
|
|
|
* When not optimizing (-O0), optimizing for size (-Os, -Oz), or using
|
|
|
|
|
* -fno-inline with GCC or Clang, this will automatically be defined.
|
|
|
|
|
*/
|
|
|
|
|
#ifndef XXH_NO_INLINE_HINTS
|
|
|
|
|
# if defined(__OPTIMIZE_SIZE__) /* -Os, -Oz */ \
|
|
|
|
|
|| defined(__NO_INLINE__) /* -O0, -fno-inline */
|
|
|
|
|
# define XXH_NO_INLINE_HINTS 1
|
|
|
|
|
# else
|
|
|
|
|
# define XXH_NO_INLINE_HINTS 0
|
|
|
|
|
# endif
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
|
* XXH_REROLL:
|
|
|
|
|
* Whether to reroll XXH32_finalize, and XXH64_finalize,
|
|
|
|
|
* instead of using an unrolled jump table/if statement loop.
|
|
|
|
|
*
|
|
|
|
|
* This is automatically defined on -Os/-Oz on GCC and Clang.
|
|
|
|
|
*/
|
|
|
|
|
#ifndef XXH_REROLL
|
|
|
|
|
# if defined(__OPTIMIZE_SIZE__)
|
|
|
|
|
# define XXH_REROLL 1
|
|
|
|
|
# else
|
|
|
|
|
# define XXH_REROLL 0
|
|
|
|
|
# endif
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* *************************************
|
|
|
|
|
* Includes & Memory related functions
|
|
|
|
|
***************************************/
|
|
|
|
|
/*!
|
|
|
|
|
* Modify the local functions below should you wish to use
|
|
|
|
|
* different memory routines for malloc() and free()
|
|
|
|
|
*/
|
|
|
|
|
#include <stdlib.h>
|
|
|
|
|
|
|
|
|
|
static void* XXH_malloc(size_t s) { return malloc(s); }
|
|
|
|
|
static void XXH_free(void* p) { free(p); }
|
|
|
|
|
|
|
|
|
|
/*! and for memcpy() */
|
|
|
|
|
#include <string.h>
|
|
|
|
|
static void* XXH_memcpy(void* dest, const void* src, size_t size)
|
|
|
|
|
{
|
|
|
|
|
return memcpy(dest,src,size);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#include <limits.h> /* ULLONG_MAX */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* *************************************
|
|
|
|
|
* Compiler Specific Options
|
|
|
|
|
***************************************/
|
|
|
|
|
#ifdef _MSC_VER /* Visual Studio warning fix */
|
|
|
|
|
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if XXH_NO_INLINE_HINTS /* disable inlining hints */
|
|
|
|
|
# if defined(__GNUC__)
|
|
|
|
|
# define XXH_FORCE_INLINE static __attribute__((unused))
|
|
|
|
|
# else
|
|
|
|
|
# define XXH_FORCE_INLINE static
|
|
|
|
|
# endif
|
|
|
|
|
# define XXH_NO_INLINE static
|
|
|
|
|
/* enable inlining hints */
|
|
|
|
|
#elif defined(_MSC_VER) /* Visual Studio */
|
|
|
|
|
# define XXH_FORCE_INLINE static __forceinline
|
|
|
|
|
# define XXH_NO_INLINE static __declspec(noinline)
|
|
|
|
|
#elif defined(__GNUC__)
|
|
|
|
|
# define XXH_FORCE_INLINE static __inline__ __attribute__((always_inline, unused))
|
|
|
|
|
# define XXH_NO_INLINE static __attribute__((noinline))
|
|
|
|
|
#elif defined (__cplusplus) \
|
|
|
|
|
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) /* C99 */
|
|
|
|
|
# define XXH_FORCE_INLINE static inline
|
|
|
|
|
# define XXH_NO_INLINE static
|
|
|
|
|
#else
|
|
|
|
|
# define XXH_FORCE_INLINE static
|
|
|
|
|
# define XXH_NO_INLINE static
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* *************************************
|
|
|
|
|
* Debug
|
|
|
|
|
***************************************/
|
|
|
|
|
/*
|
|
|
|
|
* XXH_DEBUGLEVEL is expected to be defined externally, typically via the
|
|
|
|
|
* compiler's command line options. The value must be a number.
|
|
|
|
|
*/
|
|
|
|
|
#ifndef XXH_DEBUGLEVEL
|
|
|
|
|
# ifdef DEBUGLEVEL /* backwards compat */
|
|
|
|
|
# define XXH_DEBUGLEVEL DEBUGLEVEL
|
|
|
|
|
# else
|
|
|
|
|
# define XXH_DEBUGLEVEL 0
|
|
|
|
|
# endif
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if (XXH_DEBUGLEVEL>=1)
|
|
|
|
|
# include <assert.h> /* note: can still be disabled with NDEBUG */
|
|
|
|
|
# define XXH_ASSERT(c) assert(c)
|
|
|
|
|
#else
|
|
|
|
|
# define XXH_ASSERT(c) ((void)0)
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* note: use after variable declarations */
|
|
|
|
|
#define XXH_STATIC_ASSERT(c) do { enum { XXH_sa = 1/(int)(!!(c)) }; } while (0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* *************************************
|
|
|
|
|
* Basic Types
|
|
|
|
|
***************************************/
|
|
|
|
|
#if !defined (__VMS) \
|
|
|
|
|
&& (defined (__cplusplus) \
|
|
|
|
|
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
|
|
|
|
|
# include <stdint.h>
|
|
|
|
|
typedef uint8_t xxh_u8;
|
|
|
|
|
#else
|
|
|
|
|
typedef unsigned char xxh_u8;
|
|
|
|
|
#endif
|
|
|
|
|
typedef XXH32_hash_t xxh_u32;
|
|
|
|
|
|
|
|
|
|
#ifdef XXH_OLD_NAMES
|
|
|
|
|
# define BYTE xxh_u8
|
|
|
|
|
# define U8 xxh_u8
|
|
|
|
|
# define U32 xxh_u32
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* *** Memory access *** */
|
|
|
|
|
|
|
|
|
|
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
|
|
|
|
|
/*
|
|
|
|
|
* Manual byteshift. Best for old compilers which don't inline memcpy.
|
|
|
|
|
* We actually directly use XXH_readLE32 and XXH_readBE32.
|
|
|
|
|
*/
|
|
|
|
|
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Force direct memory access. Only works on CPU which support unaligned memory
|
|
|
|
|
* access in hardware.
|
|
|
|
|
*/
|
|
|
|
|
static xxh_u32 XXH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr; }
|
|
|
|
|
|
|
|
|
|
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* __pack instructions are safer but compiler specific, hence potentially
|
|
|
|
|
* problematic for some compilers.
|
|
|
|
|
*
|
|
|
|
|
* Currently only defined for GCC and ICC.
|
|
|
|
|
*/
|
|
|
|
|
#ifdef XXH_OLD_NAMES
|
|
|
|
|
typedef union { xxh_u32 u32; } __attribute__((packed)) unalign;
|
|
|
|
|
#endif
|
|
|
|
|
static xxh_u32 XXH_read32(const void* ptr)
|
|